6th International Conference on Holography, String Theory and Spacetime in Da Nang

Duy Tan University DaNang, VietNam
20-24 February 2023

Comments on Krylov Complexity

2023.02.24

Gwangju Institute of Science and Technology

Comments on Krylov Complexity

```
ZIWiV > hep-th > arXiv:2212.14702
```

High Energy Physics - Theory
[Submitted on 30 Dec 2022 (v1), last revised 25 Jan 2023 (this version, v2)]
Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum

Comments on Krylov Complexity

```
コIKiV > hep-th > arXiv:2212.14702
```

High Energy Physics－Theory
［Submitted on 30 Dec 2022 （v1），last revised 25 Jan 2023 （this version，v2）］

Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum

Hugo A．Camargo，Viktor Jahnke，Keun－Young Kim，Mitsuhiro Nishida

```
\Xi!\iV > hep-th > arXiv:2212.14429
```

High Energy Physics－Theory
［Submitted on 29 Dec 2022］

Krylov complexity in quantum field theory，and beyond

Alexander Avdoshkin，Anatoly Dymarsky，Michael Smolkin

A Universal Operator Growth Hypothesis

Daniel E．Parker（UC，Berkeley），Xiangyu Cao（UC，Berkeley），Alexander Avdoshkin（UC，Berkeley），Thomas
Scaffidi（UC，Berkeley），Ehud Altman（UC，Berkeley）（Dec 20，2018）
Published in：Phys．Rev．X 9 （2019）4， 041017 • e－Print： 1812.08657 ［cond－mat．stat－mech］
（ ${ }^{2} \mathrm{pdf}$
（2）DOI
Ξ cite
㘣
claim
回 reference search
156 citations

Comments on Krylov Complexity

Aleksey Nikolaevich Krylov (1863-1945)
a Russian naval engineer, applied mathematician and memoirist.

Complexity Equals Anything
By Shan-Ming Ruan

Holographic complexity \longleftrightarrow QFT complexity Ambiguity Ambiguity

Complexity

ChatGPT

Complexity refers to the level of difficulty involved in understanding, analyzing, or managing a system, problem, or process. It often refers to the number of components, interconnections, interactions, or variables involved in a particular system or process.
(Computational) complexity [Computer science] quantifying the difficulty of carrying out a task.

(Circuit) complexity

Quantum Computer ~ Quantum Circuit

Minimal uumber of gates for the transformation from the reference to target state

$$
\left|\psi_{T}\right\rangle=U\left|\psi_{R}\right\rangle=g_{n} g_{n-1} \cdots g_{2} g_{1}\left|\psi_{R}\right\rangle
$$

$$
\text { Universal gate sets }=\{a, b, c, d, e, f\}
$$

$$
\begin{gathered}
G=d b e \\
G=c e a b \\
G=a b e f a \\
\text { complexity }=3
\end{gathered}
$$

Comments on Krylov Complexity

Aleksey Nikolaevich Krylov (1863-1945)
a Russian naval engineer, applied mathematician and memoirist.

Complexity Equals Anything By Shan-Ming Ruan

Holographic complexity \longleftrightarrow QFT complexity
Ambiguity Ambiguity

Complexity: how much things are complex
Chaos: how fast things get complex
~ fast time evolution of complexity
"Krylov complexity" is a well-defined concept proposed as a diagnose of quantum chaos (which is not-well defined)

Comments on Krylov Complexity

- Quantum Chaos
- Krylov complexity as a diagnosis of quantum chaos
- Krylov space (Hamiltonian, operator)
- Operator growth
- Lanczos coefficient
- Examples for lattice systems
- Universal operator growth hypothesis
- Towards field theory
- Subtlety in field theory
- Revision of universal operator growth hypothesis

Cornelius (Cornel) Lanczos (1893-1974):
a Hungarian-American and later Hungarian-Irish mathematician and physicist.

Quantum Chaos

ChatGPT

$\left|\left\{q^{i}(t), p^{j}(0)\right\}_{P B}=\left|\frac{\partial q^{i}(t)}{\partial q^{j}(0)}\right| \sim e^{\lambda t}\right.$
$-\left\langle\left[q^{i}(t), p^{j}(0)\right]^{2}\right\rangle_{\beta}$,
$-\left\langle[V(t), W(0)]^{2}\right\rangle_{\beta}$
Out-of-time-order correlator (OTOC)

Level spacing statistics

Eingenstate Thermalization Hypothesis (ETH)

Quantum chaos is a field of physics that studies the behavior of quantum systems that are classically chaotic. Classically chaotic systems are those that exhibit sensitive dependence on initial conditions, meaning small changes in the initial conditions lead to vastly different outcomes over time.

In quantum mechanics, chaotic behavior can manifest in the statistical properties of the system's energy spectrum or in the time evolution of its wave function. The study of quantum chaos is concerned with understanding how the behavior of the system changes as classical chaos is introduced or increased, and how this behavior can be observed and measured experimentally.

Quantum chaos has applications in various fields, including solid-state physics, quantum computing, and quantum information theory. It has also led to new insights into the fundamental nature of quantum mechanics and the connections between classical and quantum physics.

Chethan Krishnan: Fuzzballs and Random Matrices Black hole physics

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{aligned}
& \partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \quad \text { Baker-Campbell-Hausdorff }(\mathrm{BCH}) \text { formula } e^{X} Y e^{-X}=\sum_{n=0}^{\infty} \frac{\mathcal{L}_{X}^{n} Y}{n!} \\
& \mathcal{O}(t)=e^{i t H} \mathcal{O}(0) e^{-i t H} \quad \\
& \mathcal{O}(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \mathcal{O}(t)=\mathcal{O}_{0}+\frac{i t}{\hbar}[H, \mathcal{O}]+\frac{(i t)^{2}}{2!\hbar^{2}}[H,[H, \mathcal{O}]]+\frac{(i t)^{3}}{3!\hbar^{3}}[H,[H,[H, \mathcal{O}]]]+\cdots . \\
& \tilde{\mathcal{O}}_{n}=\mathcal{L}^{n} \mathcal{O}(0) . \quad \mathcal{L}:=[H, \cdot] \quad \mathcal{O}(t)=e^{i \mathcal{L} t} \mathcal{O}(0)
\end{aligned}
$$

ex) $1 D$ spin chain

$$
\left.\begin{array}{l}
H=-\sum\left(Z_{i} Z_{i+1}+g X_{i}+h Z_{i}\right) \\
Z_{1}(t)=Z_{1}-i t\left[H, Z_{1}\right]-\frac{t^{2}}{2!}\left[H,\left[H, Z_{1}\right]\right]+\frac{i t^{3}}{3!}\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]+\ldots \\
{\left[H, Z_{1}\right]}
\end{array}\right) Y_{1} .
$$

The time evolution of an operator O by a time independent Hamiltonian H

$$
\begin{array}{rlrl}
\partial_{t} \mathcal{O}(t) & =i[H, \mathcal{O}(t)] & \left.\left.\partial_{t} \mid \mathcal{O}(t)\right)=i \mathcal{L} \mid \mathcal{O}(t)\right) \\
\mathcal{O}(t) & =e^{i t H} \mathcal{O}(0) e^{-i t H} & \mathcal{O}(t) & \left.=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \mathcal{O}(t)=\mathcal{O}_{0}+\frac{i t}{\hbar[H, \mathcal{O}]}+\frac{(i t)^{2}}{2!\hbar^{2}}[H,[H, \mathcal{O}]]\right]+\frac{(i t)^{3}}{3!\hbar^{3}}[H,[H,[H, \mathcal{O}]]]+\cdots \\
& \tilde{\mathcal{O}}_{n}=\mathcal{L}^{n} \mathcal{O}(0) . & \mathcal{L}:=[H, \cdot] \quad \mathcal{O}(t)=e^{i \mathcal{L} t} \mathcal{O}(0)
\end{array}
$$

- The set of operators $\left\{\tilde{\mathcal{O}}_{n}\right\}$ defines a basis of the so-called Krylov space associated to the operator \mathcal{O}
- Regard the operator as a state $\mathcal{O} \rightarrow \mid \mathcal{O}$) in the Hilbert space of operators

Inner product: Wightman inner product

$$
(A \mid B):=\left\langle e^{\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right\rangle_{\beta}=\frac{1}{\mathcal{Z}_{\beta}} \operatorname{Tr}\left(e^{-\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right) \quad \mathcal{Z}_{\beta}:=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Krylov basis $\left(\mathcal{O}_{m} \mid \mathcal{O}_{n}\right)=\delta_{m n}$ (Lanczos algorithm: Gram-Schmidt procedure)

$$
\begin{array}{rlrl}
\left|\mathcal{O}_{0}\right| & \left.\left.:=\mid \tilde{\mathcal{O}}_{0}\right):=\mid \mathcal{O}(0)\right) & \left\{b_{n}\right\}: \text { Lanczos coefficients } & \\
\left.\left|\mathcal{O}_{1}\right|:=b_{1}^{-1} \mathcal{L} \mid \tilde{\mathcal{O}}_{0}\right) & b_{1}:=\left(\tilde{\mathcal{O}}_{0} \mathcal{L} \mid \mathcal{L} \tilde{\mathcal{O}}_{0}\right)^{1 / 2} & L_{n m}:=\left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) \\
& b_{n}:=\left(A_{n} \mid A_{n}\right)^{1 / 2} & \left.=b_{n}^{-1} \mid A_{n}\right) & =b_{n} \delta_{m, n-1}+b_{n+1} \delta_{m, n+1} \\
& &
\end{array}
$$

Discrete "Schrodinger equation"

$$
\begin{aligned}
& \partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \quad \text { "probability amplitudes" } \sum_{n=0}^{\infty}\left|\varphi_{n}(t)\right|^{2}=1 \\
& \left.\left.\left.\left.\partial_{t} \mid \mathcal{O}(t)\right)=i \mathcal{L} \mid \mathcal{O}(t)\right) \quad \mid \mathcal{O}(t)\right)=\sum_{n=0}^{\infty} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right) \quad \varphi_{n}(t):=i^{-n}\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right) \\
& \\
& \quad L_{n m}:=\left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)=b_{n} \delta_{m, n-1}+b_{n+1} \delta_{m, n+1} \\
& \left.\begin{array}{l}
\frac{\mathrm{d} \varphi_{n}(t)}{\mathrm{d} t}=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
\varphi_{n}(0)=\delta_{n, 0} \quad \varphi_{-1}(t) \equiv 0 \equiv b_{0} \quad \dot{\varphi}_{0}(t)=b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\vdots
\end{array}\right)
\end{aligned}
$$

a quantum-mechanical particle on a 1-dimensional chain.

$$
\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
$$ $b_{n}=$ hopping amplitudes

Krylov complexity average position over the chain

$$
K_{\mathcal{O}}(t):=(\mathcal{O}(t)|n| \mathcal{O}(t))=\sum_{n=0}^{\infty} n\left|\varphi_{n}(t)\right|^{2}
$$

Auto-correlation function $\quad C(t)=\Pi^{W}(t)=\varphi_{0}(t)$

$$
\begin{aligned}
C(t) & :=(\mathcal{O}(t) \mid \mathcal{O}(0))=\varphi_{0}(t) \\
& =\left\langle e^{i(t-i \beta / 2) H} \mathcal{O}^{\dagger}(0) e^{-i(t-i \beta / 2) H} \mathcal{O}(0)\right\rangle_{\beta} \\
& =\left\langle\mathcal{O}^{\dagger}(t-i \beta / 2) \mathcal{O}(0)\right\rangle_{\beta}=: \Pi^{W}(t) \\
\langle\cdots\rangle_{\beta} & =\operatorname{Tr}\left(e^{-\beta H} \cdots\right) / \operatorname{Tr}\left(e^{-\beta H}\right)
\end{aligned}
$$

Moments $\mu_{2 n}$

$$
\Pi^{W}(t):=\sum_{n=0}^{\infty} \mu_{2 n} \frac{(i t)^{2 n}}{(2 n)!} \quad \mu_{2 n}:=\left.\frac{1}{i^{2 n}} \frac{\mathrm{~d}^{2 n} \Pi^{W}(t)}{\mathrm{d} t^{2 n}}\right|_{t=0} \quad \quad \mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
$$

Lanczos coefficients from moments

$b_{1}^{2 n} \cdots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n} \quad$ Hankel matrix
$\mu_{2}=b_{1}^{2}, \quad \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}, \quad \cdots$.
constructed from the moments.

$$
H_{n}=\left[\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
a_{2} & a_{3} & \ldots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \ldots & a_{2 n-1}
\end{array}\right]
$$

$$
b_{n}=\sqrt{M_{2 n}^{(n)}}, \quad \begin{aligned}
& M_{2 l}^{(j)}=\frac{M_{2 l}^{(j-1)}}{b_{j-1}^{2}}-\frac{M_{2 l-2}^{(j-2)}}{b_{j-2}^{2}} \quad \text { with } \quad l=j, \ldots, n \\
& \\
& M_{2 l}^{(0)}=\mu_{2 l} \quad, \quad b_{-1} \equiv b_{0}:=1 \quad, \quad M_{2 l}^{(-1)}=0
\end{aligned}
$$

Lanczos coefficients

$$
\begin{array}{cc}
\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega) \\
\boldsymbol{\Pi}^{W}(t)= \\
\left.\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega e^{-i \omega t} f^{W}(\omega) \right\rvert\, & \mu_{2 n} \\
& \\
C(t)=\Pi^{W}(t)=\varphi_{0}(t) & \downarrow_{1}^{2 n} \cdots b_{n}^{2}= \\
\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n} \\
& b_{n}
\end{array}
$$

K-complexity

$$
\begin{aligned}
\dot{\varphi}_{0}(t) & =b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\dot{\varphi}_{1}(t) & =b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
\vdots & \\
\dot{\varphi}_{n}(t) & =b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
K_{\mathcal{O}}(t) & =\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

$$
\begin{aligned}
& b_{n} \sim n^{\delta} \Longleftrightarrow f^{W}(\omega) \sim \exp \left(-\left|\omega / \omega_{0}\right|^{1 / \delta}\right) \\
& \delta \leq 1 \\
& \text { Universal operator growth hypothesis }
\end{aligned}
$$

In a chaotic quantum system
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible

$$
b_{n} \sim \alpha n
$$

the slowest possible decay of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
$$

Krylov complexity grows exponentially

$$
K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad \Longleftrightarrow \quad b_{n} \sim \alpha n \quad \Longleftrightarrow \quad K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Only if b_{n} is a smooth function of n Otherwise

Wightman 2-point function

$$
\Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta}\left(t=\frac{i \beta}{2}\right) f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \nLeftarrow b_{n} \nsim \alpha n \nLeftarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Power spectrum

$f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t} \stackrel{\downarrow}{=} \int \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}$

$$
f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
$$

$$
m=0, d=4
$$

$$
f^{W}(\omega)=\frac{\beta^{2} \omega}{\pi \sinh \left(\frac{\beta \omega}{2}\right)}
$$

$$
\beta b_{n}
$$

In a-chaotic quantum system In general QFT Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible??

$$
b_{n} \sim \alpha n \sim \frac{\pi}{\beta} n
$$

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Only if b_{n} is a smooth function of n Otherwise

Wightman 2-point function

$$
\Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta}\left(t=\frac{i \beta}{2}\right) \quad f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha \mid}} \nLeftarrow b_{n} \nsim \alpha n \nLeftarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Power spectrum

$f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t} \stackrel{\downarrow}{=} \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}$

$$
f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
$$

In a-chaotic quantumsystem In general QFT Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible??

$$
b_{n} \sim \alpha n \sim \frac{\pi}{\beta} n
$$

High frequency tail of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}}
$$

Dynamical info (Lattice) vs Kinematical info (QFT)
Need to take into account

- Low frequency behavior
- Sub leading behavior

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

Wightman 2-point function

$$
\begin{aligned}
& \Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta} \\
& \Pi^{W}(\omega, \mathbf{k}):=\int \mathrm{d} t \int \mathrm{~d}^{d-1} \mathbf{x} e^{i \omega t-i \mathbf{k} \cdot \mathbf{x}} \Pi^{W}(t, \mathbf{x})
\end{aligned}
$$

Power spectrum

$$
\begin{aligned}
\Pi^{W}(\omega, \mathbf{k}) & =\frac{1}{\sinh [\beta \omega / 2]} \rho(\omega, \mathbf{k}) \\
\rho(\omega, \mathbf{k}) & =\frac{N}{\epsilon_{k}}\left[\delta\left(\omega-\epsilon_{k}\right)-\delta\left(\omega+\epsilon_{k}\right)\right] \\
\epsilon_{k} & :=\sqrt{|\mathbf{k}|^{2}+m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
C(t) & =\Pi^{W}(t, \mathbf{0}) \\
f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t} & =\int \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}=\int \frac{\mathrm{d}^{d-1} \mathbf{k}}{(2 \pi)^{d-1}} \Pi^{W}(\omega, \mathbf{k})
\end{aligned}
$$

Staggering:
b_{n} two families for even n and odd n

$$
\begin{aligned}
& f^{W}(\omega)=N(m, \beta, d) \frac{\left(\omega^{2}-m^{2}\right)^{(d-3) / 2}}{\left|\sinh \left(\frac{\beta \omega}{2}\right)\right|} \Theta(|\omega|-m) \\
& \int \frac{\mathrm{d} \omega}{2 \pi} f^{W}(\omega)=1 \\
& f^{W}(\omega) \longrightarrow \mu_{2 n} \longrightarrow b_{n} \\
& \mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega) \quad b_{1}^{2 n} \cdots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}
\end{aligned}
$$

Non-trivial mass (IR-cutoff) effect: staggering

Power spectrum $\quad \beta m \gg 1$

$$
f^{W}(\omega) \approx N(m, \beta, d) e^{-\beta|\omega| / 2}\left(\omega^{2}-m^{2}\right)^{(d-3) / 2} \Theta(|\omega|-m) \quad N(m, \beta, d)=\frac{\pi^{3 / 2} \beta^{(d-2) / 2}}{2^{d-2} m^{(d-2) / 2} K_{\frac{d-2}{2}}\left(\frac{m \beta}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}
$$

$K_{n}(z)$ is the modified Bessel function of the second kind

Moments to Lanczos coefficients ($\mathrm{d}=5$)

$\tilde{\Gamma}(n, z)$ is the incomplete Gamma function.
$\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)=\frac{2^{-2} e^{\frac{m \beta}{2}}}{2+m \beta}\left(\frac{2}{\beta}\right)^{2 n}\left[-m^{2} \beta^{2} \tilde{\Gamma}\left(2 n+1, \frac{m \beta}{2}\right)+4 \tilde{\Gamma}\left(2 n+3, \frac{m \beta}{2}\right)\right]$

Staggering: two families for even n and odd n
Because b_{n} is not a smooth function of n

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad \nLeftarrow \quad b_{n} \sim \alpha n \quad \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

$$
\begin{array}{ll}
\text { Staggering } & b_{n} \sim \alpha_{\text {odd }} n+\gamma_{\text {odd }} \quad(\operatorname{odd} n) \\
b_{n} \sim \alpha_{\text {even }} n+\gamma_{\text {even }} \quad(\text { even } n)
\end{array}
$$

(a) Mass-dependence of $\alpha_{\text {odd }}$ and $\alpha_{\text {even }}$

$$
\beta\left(\gamma_{\text {odd }}-\gamma_{\text {even }}\right)
$$

(b) Mass-dependence of $\gamma_{\text {odd }}-\gamma_{\text {even }}$

Lanczos coefficients

K-complexity

$$
\begin{aligned}
& \dot{\varphi}_{0}(t)=b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
& \dot{\varphi}_{1}(t)=b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
& \vdots \\
& \dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
& K_{\mathcal{O}}(t)=\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Lanczos coefficients

K-complexity

- Early time: oscillation:
- larger m, shorter period
- Late time: oscillation disappears
- cancelation due to large n
- Exponential increase
- larger m, slower increase
- staggering effect

(a) $d=5$

(c) $d=9$

(b) $d=7$
$\cdots \cdots K_{0}(\mathrm{t})=(\mathrm{d}-2) \sinh ^{2}(\pi t / \beta)$
------ $K_{o}(t)$ for $\beta m=0$
- - - $K_{0}(t)$ for $\beta m=10$
------ $K_{o}(t)$ for $\beta m=50$
—— $K_{\mathrm{O}}(\mathrm{t})$ for $\beta \mathrm{m}=100$

$$
K_{O}(t) \sim e^{\tilde{\lambda t}} \quad, 1.5 \leq \pi t / \beta \leq 2
$$

$$
\begin{aligned}
\beta \tilde{\lambda}_{K}^{(d)} & =\beta(\underbrace{}_{\text {odd }}+\alpha_{\text {even }})+k_{2}^{(d)}\left(\frac{1}{k_{3}^{(d)}+\left(\beta \mid \gamma_{\text {odd }}-\gamma_{\text {even }}\right)}-\frac{1}{k_{3}^{(d)}}\right)+ \\
& +k_{4}^{(d)}\left(\frac{1}{\left(k_{3}^{(d)}+\left(\beta \mid \gamma_{\text {odd }}-\gamma_{\text {even }}\right)\right)^{2}}-\frac{1}{\left(k_{3}^{(d)}\right)^{2}}\right)
\end{aligned}
$$

$$
m=0, d=4
$$

$$
f^{W}(\omega)=N(\beta, \Lambda, \delta) \frac{\omega}{\sinh \left(\frac{\beta \omega}{2}\right)} \exp \left(-|\omega / \Lambda|^{1 / \delta}\right)
$$

Summary

- Is it possible to extract the chaos-info from a $C(t)$ or the spectral function?

Lanczos coefficients

$$
\mu_{2 n}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \omega^{2 n} f^{W}(\omega)
$$

$$
\begin{array}{l|l}
\begin{array}{l}
\Pi^{W}(t)= \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega e^{-i \omega t} f^{W}(\omega) \\
\\
\\
C(t)=\Pi^{W}(t)=\varphi_{0}(t)
\end{array} & \begin{array}{l}
b_{1}^{2 n} \cdots b_{n}^{2}= \\
\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}
\end{array} \\
& b_{n}
\end{array}
$$

K-complexity

$$
\begin{aligned}
\dot{\varphi}_{0}(t) & =b_{0} \overbrace{\varphi_{-1}(t)}^{=0}-b_{1} \varphi_{1}(t) \\
\dot{\varphi}_{1}(t) & =b_{1} \varphi_{0}(t)-b_{2} \varphi_{2}(t) \\
\vdots & \\
\dot{\varphi}_{n}(t) & =b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
K_{\mathcal{O}}(t) & =\sum_{n=1}^{n_{\max }} n\left|\varphi_{n}(t)\right|^{2}, \quad n_{\max }=200 .
\end{aligned}
$$

Summary

- Is it possible to extract the chaos-info from a $C(t)$ or the spectral function?
- Seems to be possible

Universal operator growth hypothesis

In a chaotic quantum system
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible

$$
b_{n} \sim \alpha n
$$

the slowest possible decay of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}}
$$

Krylov complexity grows exponentially

- Supporting evidences and counter examples
- Subtleties of QFT and refinements of the hypothesis

$$
K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Summary

$$
\mathcal{L}_{E}^{\text {free }}=\frac{1}{2}(\partial \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \Longleftrightarrow b_{n} \sim \alpha n \Longleftrightarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Only if b_{n} is a smooth function of n Otherwise

Wightman 2-point function

$$
\Pi^{W}(t, \mathbf{x}):=\langle\phi(t-i \beta / 2, \mathbf{x}) \phi(0, \mathbf{0})\rangle_{\beta}\left(t=\frac{i \beta}{2}\right) \quad f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \nLeftarrow b_{n} \nsim \alpha n \nLeftarrow K_{\mathcal{O}}(t) \sim e^{2 \alpha t}
$$

Power spectrum

$f^{W}(\omega):=\int \mathrm{d} t C(t) e^{i \omega t} \stackrel{\downarrow}{=} \int \mathrm{d} t \Pi^{W}(t, \mathbf{0}) e^{i \omega t}$

$$
f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}} \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad\left(\alpha=\frac{\pi}{\beta}\right)
$$

In a-chaotic quantum system In general QFT
Lanczos coefficients $\left\{b_{n}\right\}$ grow as fast as possible??

$$
b_{n} \sim \alpha n \sim \frac{\pi}{\beta} n
$$

High frequency tail of the power spectrum

$$
f^{W}(\omega) \sim e^{-\frac{\pi|\omega|}{2 \alpha}} \quad f^{W}(\omega) \sim e^{-\frac{\beta|\omega|}{2}}
$$

Dynamical info (Lattice) vs Kinematical info (QFT)
Need to take into account

- Low frequency behavior
- Sub leading behavior

Summary

$$
\begin{array}{ll}
\text { Staggering } & b_{n} \sim \alpha_{\text {odd }} n+\gamma_{\text {odd }} \quad(\quad \operatorname{odd} n) \\
b_{n} \sim \alpha_{\text {even }} n+\gamma_{\text {even }} \quad(\text { even } n)
\end{array}
$$

$$
\beta\left(\gamma_{\text {odd }}-\gamma_{\text {even }}\right)
$$

(a) Mass-dependence of $\alpha_{\text {odd }}$ and $\alpha_{\text {even }}$

(b) Mass-dependence of $\gamma_{\text {odd }}-\gamma_{\text {even }}$

Summary

$K_{\mathcal{O}}(t) \sim e^{\tilde{\lambda} t} \quad, 1.5 \leq \pi t / \beta \leq 2$.

$$
\begin{aligned}
\beta \tilde{\lambda}_{K}^{(d)} & =\beta(\underbrace{}_{\text {odd }}+\alpha_{\text {even }})+k_{2}^{(d)}\left(\frac{1}{k_{3}^{(d)}+\left(\beta \mid \gamma_{\text {odd }}-\gamma_{\text {even }}\right)}-\frac{1}{k_{3}^{(d)}}\right)+ \\
& +k_{4}^{(d)}\left(\frac{1}{\left(k_{3}^{(d)}+\left(\beta \mid \gamma_{\text {odd }}-\gamma_{\text {even }}\right)\right)^{2}}-\frac{1}{\left(k_{3}^{(d)}\right)^{2}}\right)
\end{aligned}
$$

Summary

$$
m=0, d=4
$$

$$
f^{W}(\omega)=N(\beta, \Lambda, \delta) \frac{\omega}{\sinh \left(\frac{\beta \omega}{2}\right)} \exp \left(-|\omega / \Lambda|^{1 / \delta}\right)
$$

$$
\delta \leq 1
$$

- Is it possible to extract the chaos-info from a $C(t)$ or the spectral function?
- More scales: compact space, interaction, other spins etc
- Holographic counterpart?
- Observations, conjectures, mathematical justification

