Spindles and new $(0,2)$ SCFTs

Matthew M. Roberts APCTP

> JHEP 10 (2022) 067 [arXiv:2207.06427] with Igal Arav (Amsterdam), Jerome P. Gauntlett (Imperial), and Christopher Rosen (U. Crete)

Outline

- What is a spindle?
- Spindles in string theory
- The Leigh-Strassler theory
- Wrapping Leigh-Strassler on a spindle

Compactifications and defects

- String theory predicts too many dimensions, so a great deal of time is spent trying to "hide" them by compactifications
- We also study lower dimensional QFTs via compactifications of higher dimensional theories

- We usually ask for these small manifolds to be smooth, but sometimes allow "acceptable" singularities (defects)
- SUSY as a guiding principle - strong evidence that all non-SUSY compactifications are unstable (swampland)

What is a spindle?

- Droplet geometry
- Topological S^{2} with conical deficits
- Orbifold (locally \mathbb{R}^{n} / Γ)
- Not a "good" orbifold (no smooth cover), but can be thought of as two $\mathbb{C} / Z_{n_{ \pm}}$glued together
- Canonical example:
- $\mathbb{W C P}_{\left[n_{+}, n_{-}\right]}=\left\{\left[z_{1}, z_{2}\right]:\left(z_{1}, z_{2}\right) \sim\left(\lambda^{n}+z_{1}, \lambda^{n-z_{2}}\right)\right\}$
- Poles at $z_{1}, z_{2}=0$: when $n_{ \pm} \neq 1$, conical defect, $\theta \sim \theta+2 \pi / n_{ \pm}$
- No constant curvature metric (except trivial case)
- $\operatorname{WCP}_{\left[n_{+}, n_{-}\right]}=\left\{\left[z_{1}, z_{2}\right]:\left(z_{1}, z_{2}\right) \sim\left(\lambda^{n}+z_{1}, \lambda^{n-z_{2}}\right)\right\}$

$W^{W} C_{[3,1]}$
$\mathbb{W C P}_{[3,2]}$
- General axisymmetric spindle:
- $d s^{2}=d \theta^{2}+h(\theta)^{2} d \phi^{2}, \phi \sim \phi+2 \pi$
- $h\left(\theta_{ \pm}\right)=0$
$h^{\prime}\left(\theta_{ \pm}\right)= \pm \frac{1}{n_{ \pm}}$

Spindles and bundles

- Why spindles?
- Generalization of S^{2} for compactifications
- Can we trust them in string theory?
- If we have gauge fields, connections of an "orbibundle", the total space can be regular
- New class of compactifications at our disposal

S^{3} and spindles

- Hopf fibration of $S^{3}: T^{2}$ over interval
- $d s^{2}=d \theta^{2}+\cos ^{2} \theta \sin ^{2} \theta d \bar{\mu}^{2}+\left(d \bar{\nu}+\sin ^{2} \theta d \bar{\mu}\right)^{2}$
- We can view as $U(1)$ bundle over round S^{2} :

$$
N_{\phi}=1, \quad \chi=2
$$

- Spindles are a simple generalization of this
- Round $S^{3}: d s^{2}=d \theta^{2}+\cos ^{2} \theta d \phi_{1}^{2}+\sin ^{2} \theta d \phi_{2}^{2}$
- Pick new torus basis:

$$
\phi_{1}=n_{+} \psi_{2}, \phi_{2}=n_{-} \psi_{2}+\psi_{1} / n_{+}
$$

- $\mathbb{W C P}_{\left[n_{+}, n_{-}\right]}:\left(z_{1}, z_{2}\right) \rightarrow\left(\lambda^{n_{+}} z_{1}, \lambda^{n_{-} z_{2}}\right)$ action generated by $V=n_{+} \partial_{\phi_{1}}+n_{-} \partial_{\phi_{2}}=\partial_{\psi_{2}}$
- $d s^{2}=d \theta^{2}+F(\theta) d \psi_{1}^{2}+G(\theta)\left(d \psi_{2}+A\right)^{2}$
- $N_{\phi}=\int \frac{d A}{2 \pi}=\frac{1}{n_{+} n_{-}}, \quad \chi=\int \frac{\omega}{2 \pi}=\frac{n_{+}+n_{-}}{n_{+} n_{-}}$

Orbibundles and spindles

- In general, when fluxes are appropriately quantized in orbibundle sense, the total space is regular

$$
g \int \frac{F}{2 \pi}=\frac{p}{n_{+} n_{-}}, \quad p \in \mathbb{Z}
$$

- Connections for global symmetries are explicitly geometric in a KK sense $\left(S O(6)_{R} \rightarrow S^{5}\right.$ fibration $)$
- When we have orbibundle spindles, the uplifted 10d solution is totally regular

Holographic SCFTs on spindles

- Wrapping on a spindle: looking for 5d SUSY solutions of the form $A d S_{3} \times \Sigma_{\text {spindle }}$
- dual to compactifying a 4d SCFT on a spindle
- (Much harder problem: Flows from $A d S_{5}$ with conformal boundary $\left.\mathbb{R}^{(1,1)} \times \Sigma_{\text {spindle }}\right)$
- We will consider a minimally SUSY case:
- The 4d $\mathscr{N}=1$ Leigh-Strassler SCFT

SUSY compactification on S^{2}

- We can preserve SUSY on curved spaces by "twisting":
. $\delta \psi_{\mu}=0=D_{\mu} \epsilon=\left(\partial_{\mu}+\frac{1}{4} \gamma^{a b} \omega_{a b \mu}-i \frac{g}{2} A_{\mu}\right) \epsilon$
- Fix a chirality on $S^{2}, \gamma^{12} \epsilon= \pm i \epsilon$,
- Balance geometric curvature $R^{(2)}$ against gauge field curvature $F^{(2)}$
- $A \pm \omega_{12}=0, \epsilon=$ const.,$N_{\phi}= \pm \chi$
- Charged fields reduce to LLL on S^{2}

Leigh-Strassler fixed point

- Think of maximal $\mathcal{N}=4$ SYM in $\mathcal{N}=1$ language:
- Three chirals, one vector
- Add a mass to one chiral only, conjectured to flow to strongly coupled LS fixed point
- Lorentz invariant flow well studied holographically

$$
\text { - } a^{N=4}=N^{2} / 4>a^{L S}=27 N^{2} / 128
$$

Bulk ingredients

- Key ingredients (from 5d perspective)
- For LS flow:
- 1 Cx. Scalar: $\Delta=3, \operatorname{tr}\left(\lambda \lambda+\mathcal{O}\left(X^{3}\right)\right)$
- 2 Re. Scalars: $\Delta=2, \operatorname{tr}\left(X^{2}\right)$
- For spindles:
- 3 gauge fields: $U(1)^{3} \subset S U(4)$

Bulk ingredients

- Useful basis for gauge fields:
- $U(1)_{R}: A_{1}+A_{2}+A_{3}, D \epsilon=\nabla \epsilon-i \frac{g}{2}\left(A_{1}+A_{2}+A_{3}\right) \epsilon$,
- $U(1)_{B}: A_{1}+A_{2}-A_{3}, D \phi=\partial \phi-i g\left(A_{1}+A_{2}-A_{3}\right) \phi$,
- $U(1)_{F}: A_{1}-A_{2}$, neither ϵ nor ϕ are charged

The bosonic part of the Le gre, in a mostly minus signa by $\mathcal{L}=-\frac{1}{4} R+\frac{1}{2}(\partial)^{2}+\frac{1}{8} \sinh ^{2} 2 \varphi(D \theta)^{2}+3(\partial \alpha)^{2}+(\partial \beta)^{2}-\mathcal{P}$
$-\frac{1}{4}\left[e^{4 \alpha-4 \beta} F{ }_{\nu}^{1)} F^{(1) \mu \nu}+e^{4 \alpha+4 \beta} F_{\mu \nu}^{(2)} F^{(2) \mu \nu}+e^{-8 \alpha} F_{\mu \nu}^{(3)} F^{(3) \mu \nu}\right]$
$\left.+\frac{1}{2} \epsilon^{\mu \nu \rho \sigma \delta} F_{\mu \nu}^{(1)}\right\rangle_{\rho \sigma}^{(2)} A_{\delta}^{(3)}$,
where

The scalar potential \mathcal{P} is given by

$$
\begin{equation*}
\mathcal{P}=\frac{g^{2}}{8}\left[\left(\frac{\partial W}{\partial \varphi}\right)^{2}+\frac{1}{6}\left(\frac{\partial W}{\partial \alpha}\right)^{2}+\frac{1}{2}\left(\frac{\partial W}{\partial \beta}\right)^{2}\right]-\frac{g^{2}}{3} W^{2}, \tag{2.3}
\end{equation*}
$$

where W is the "superpotential" defined by

$$
\begin{equation*}
W=-\frac{1}{4}\left[\left(e^{-2 \alpha-2 \beta}+e^{-2 \alpha+2 \beta}-e^{4 \alpha}\right) \cosh 2 \varphi+\left(e^{-2 \alpha-2 \beta}+e^{-2 \alpha+2 \beta}+3 e^{4 \alpha}\right)\right] . \tag{2.4}
\end{equation*}
$$

LS vacuum: $e^{6 \alpha}=2, e^{2 \varphi}=3, \beta=0$

$$
\Delta^{I R}=1+\sqrt{7}, 2+\sqrt{7}, 3+\sqrt{7}
$$

Plan of attack

- Ansatz: $d s^{2}=e^{2 V(\theta)} d\left(A d S_{3}\right)^{2}+d \theta^{2}+h(\theta)^{2} d \phi^{2}$
- $A^{(i)}=a_{i}(\theta) d \phi, \varphi=\varphi(\theta)$ etc.
- We will study BPS equations of 5d theory to look for SUSY spindle backgrounds (total SUSY is $2 \mathrm{~d}(0,2)$):
. Labelled by $\left(n_{+}, n_{-}\right)$and fluxes $g \int \frac{F_{i}}{2 \pi}=\frac{p_{i}}{n_{+} n_{-}}$
- With uplift to 10 d , we confirm the total space is regular
- Since chiral mass is charged under $U(1)_{B}$, we tune flux

$$
p_{B}=p_{1}+p_{2}-p_{3}=0
$$

- Mass is constant over spindle in UV - Assumption! If $p_{B} \neq 0$, then mass term must vanish at one/both poles
- We allow $p_{R}=p_{1}+p_{2}+p_{3} \neq 0, p_{F}=p_{1}-p_{2} \neq 0$
- BPS equations: coupled, first order ODEs
- Technical details in our paper
- SUSY spindles have two compactification classes:
- Twist (the usual case):

$$
\begin{gathered}
g \int \frac{F_{R}}{2 \pi}=\frac{p_{1}+p_{2}+p_{3}}{n_{+} n_{-}}= \pm \frac{n_{+}+n_{-}}{n_{+} n_{-}}= \pm \chi \\
\gamma^{12} \epsilon= \pm i \epsilon \text { everywhere on spindle }
\end{gathered}
$$

- Simple generalization of smooth twist
- "Anti-twist" (new, doesn't occur on S^{2}):

$$
g \int \frac{F_{R}}{2 \pi}=\frac{p_{1}+p_{2}+p_{3}}{n_{+} n_{-}}= \pm \frac{n_{+}-n_{-}}{n_{+} n_{-}}
$$

- $\left.\gamma^{12} \epsilon\right|_{N . P .}= \pm\left. i \epsilon\right|_{N . P .},\left.\quad \gamma^{12} \epsilon\right|_{S . P .}=\left.\mp i \epsilon\right|_{S . P .}$
- ϵ rotates from chiral to anti-chiral between the two poles of the spindle
- $\left[\cos \xi \gamma^{12}+\sin \xi \gamma^{1}\right] \epsilon=+i \epsilon,\left.\xi\right|_{N . P .}=0,\left.\xi\right|_{S . P .}=\pi$

Homework: staring at these for a few months

with these Killing spinors can be written in the form

$$
\begin{align*}
f^{-1} \xi^{\prime} & =g W \cos \xi+2 \kappa e^{-V}, \\
f^{-1} V^{\prime} & =\frac{g}{3} W \sin \xi \\
f^{-1} \alpha^{\prime} & =-\frac{g}{12} \partial_{\alpha} W \sin \xi \\
f^{-1} \beta^{\prime} & =-\frac{g}{4} \partial_{\beta} W \sin \xi \\
f^{-1} \varphi^{\prime} & =-\frac{g}{2} \frac{\partial_{\varphi} W}{\sin \xi} \\
f^{-1} \frac{h^{\prime}}{h} & =\frac{1}{\sin \xi}\left(2 \kappa e^{-V} \cos \xi+\frac{g W}{3}\left(1+2 \cos ^{2} \xi\right)\right), \tag{3.10}
\end{align*}
$$

along with the two constraint equations

$$
\begin{align*}
\left(s-Q_{z}\right) \sin \xi & =-\frac{1}{2} g W h \cos \xi-\kappa h e^{-V} \\
\frac{g}{2} \partial_{\varphi} W \cos \xi & =\partial_{\varphi} Q_{z} \sin \xi h^{-1} \tag{3.11}
\end{align*}
$$

Furthermore the field strength components in the orthonormal frame are given by

$$
\begin{align*}
e^{2 \alpha-2 \beta} F_{34}^{(1)} & =-\frac{g}{12}\left[4 W-\partial_{\alpha} W+3 \partial_{\beta} W\right] \cos \xi-\kappa e^{-V}, \\
e^{2 \alpha+2 \beta} F_{34}^{(2)} & =-\frac{g}{12}\left[4 W-\partial_{\alpha} W-3 \partial_{\beta} W\right] \cos \xi-\kappa e^{-V}, \\
e^{-4 \alpha} F_{34}^{(3)} & =-\frac{g}{6}\left[2 W+\partial_{\alpha} W\right] \cos \xi-\kappa e^{-V} . \tag{3.12}
\end{align*}
$$

Results

- Solutions are "nearly analytic": system not quite integrable, but can analytically extract almost all data
- All LS spindles are in "anti-twist" class:
$g \int \frac{F_{R}}{2 \pi}=\frac{p_{1}+p_{2}+p_{3}}{n_{+} n_{-}}= \pm \frac{n_{+}-n_{-}}{n_{+} n_{-}}$,
. Compare with $\chi(\Sigma)=\frac{n_{+}+n_{-}}{n_{+} n_{-}}:$not topological twist!
- In $\mathcal{N}=4$ SYM wrappings, both twist and anti-twist occur
- Other fluxes: $p_{B}=0$ by fiat
- Regular solutions exist only when $0 \leq 2\left|p_{F}\right|<\left|n_{+}-n_{-}\right|$
- We can calculate the central charge analytically

$$
\text { - } c^{L S}=\frac{3\left(n_{+}-n_{-}\right)\left[\left(n_{+}-n_{-}\right)^{2}-4 p_{F}^{2}\right]\left[3\left(n_{+}-n_{-}\right)^{2}+4 p_{F}^{2}\right]}{32 n_{+} n_{-}\left[\left(n_{+}-n_{-}\right)^{2}\left(n_{+}^{2}+n_{+} n_{-}+n_{-}^{2}\right)+4 n_{+} n_{-} p_{F}^{2}\right]} N^{2}
$$

- "Minimal flux" case: $p_{F}=p_{B}=0$,
- Only $p_{R}=\frac{n_{+}-n_{-}}{4 n_{+} n_{-}} \neq 0$
. $c=\frac{4\left(n_{+}-n_{-}\right)^{3}}{3 n_{+} n_{-}\left(n_{+}^{2}+n_{+} n_{-}+n_{-}^{2}\right)} a_{L S}, \quad a_{L S}=\frac{27 N^{2}}{128}$

Comments

- Antitwist S^{2} case, $n_{+}=n_{-}=1$, is excluded $(c=0)$
- We can also calculate $c_{2 D}$ via c-extremisation (reducing 4 d anomaly polynomial on spindle), with exact agreement!
- In field theory, c-ext. works for twist and anti-twist
- Supergravity tells us twist case doesn't happen (reality conditions on solution)
- One can consider $\mathcal{N}=4$ SYM wrapped on same spindle with fluxes:
- If we constrain $p_{B}=0$, again only anti-twist!
- $c^{\mathcal{N}=4}=\frac{3\left(n_{+}-n_{-}\right)\left(\left(n_{+}-n_{-}\right)^{2}-4 p_{F}^{2}\right)}{2 n_{+} n_{-}\left(5 n_{+}^{2}+5 n_{-}^{2}+6 n_{+} n_{-}-4 p_{F}^{2}\right)} N^{2}$
- One can show $c^{\mathcal{N}=4}>c^{L S}$ for all allowed fluxes
- Flows should exist between these SCFTs!

Conclusions

- Constructed holographic dual of the $\mathcal{N}=1$ Leigh-Strassler theory compactified on a spindle
- Uplift is regular once flux appropriately quantized
- Solutions only exist in "anti-twist" class, $N_{\phi} \neq \chi$, a new SUSY compactification method
- Bulk calculation of $c_{2 D}$ matches QFT extremisation
- First construction of spindles built with hyper 'plets

Open questions

- BPS spectrum of new $(0,2)$ fixed points?
- Spindle pairs with $c^{U V}>c^{I R}$: can we construct flows between them by turning on LS deformation on the spindle?
- Where are the asymptotically $A d S_{5}$ solutions?
- Anti-twist: can't be section of CY, what is brane construction of anti-twist spindle wrapping?

Thank you

