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1. Introduction and motivation

. V-QCD and quark matter

. Holographic nuclear matter

» [solated baryons V-QCD

» Dense homogeneous nuclear matter

. "Hybrid" Equations of State (EoSs)

» Combining V-QCD with other approaches
» Model at finite temperature and density

. Application to neutron star mergers
» Production of quark matter
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QCD phase diagram: theoretical results
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QCD phase diagram: theoretical results
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QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials
> Effective field theory works at small densities

» Perturbative QCD: only at high densities and temperatures
» Open questions at intermediate densities
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Neutron star
cores

1. Improving theoretical predictions important!
2. Incoming experimental data from neutron star measurements!
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n stars

Neutron stars: extremely dense cold QCD matter ;" ouercore 72"

» Tolman-Oppenheimer-Volkoff (TOV) equations e
map equation of state (EoS) to mass-radius relation” \ G /"
» EoS can be constrained by measuring masses and radii

Mass measurements: dozens of results using
various methods
» Highest masses from Shapiro delay
measurement of NS — white dwarf binaries

J0348+0432 and J0740-+6620:
[Antoniadis et al 1304.6875
Minax 2 R 2Mo Cromartie et al 1904.06759]

coces

Radius measurements: more challenging,
high uncertainties

» Cooling after X-ray bursts = radii around B
e »-._mFu«ren Star binaries|
10-15 km oL e

Neutron stor mass (M)

More and better results expected in near future! E.g. NICER [-2ttimer]
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LIGO/Virgo constraints from GW170817

» The tidal deformability A measures how strongly neutron stars
deform in gravitational field

» Inspiral phase GW signal gives 0 Nopnalized amplihde ¢
an upper bound A < 580 o ———

» Implies a rough upper bound for
neutron star radius: R < 13.5 km
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Constraints on equation of state (EoS)

State of the art for QCD EoS at T = 0: interpolations between
nuclear EoS and pQCD, constrained by

1. Mass bound Myy.x > 2M;, (excludes cyan area)
2. LIGO constraint from GW170817: (excludes red area)
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[Adapted from Annala, Gorda, Kurkela, Vuorinen 1711.02644]
Source of uncertainties: physics at strong coupling =
Can holographic methods be used to reduce uncertainties further?
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2. V-QCD
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Gauge/gravity duality for QCD

> Motivated by the original
AdS/CFT correspondence for
N =4 SYM

» Instead of conformality,
confinement:
non-AdS/non-CFT duality

» Field theory lives on the " holographic
boundary of the 5D geometry U~ ordinate

» Operators O;(x*) <« classical bulk fields ¢;(x*, r)

/D elSQCD+lfd4xJ’ xH)O;(xH)

grav(d) ‘bdry = J

» Eg' ’l/_)J/l/)’ H ¢U T/l,l/ <_> g,ll,l/ J’u, <—> A/l,

» Thermodynamics of QCD <+ thermodynamics of a planar bulk
black hole
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Holographic V-QCD

A holographic model for QCD
» Bottom-up, but trying to follow principles from string theory
closely [MJ, Kiritsis 1112.1261; Review MJ 2110.08281]

The model is obtained through a fusion of two building blocks:

1. IHQCD: model for glue inspired by string theory
[Glirsoy, Kiritsis, Nitti; Gubser, Nellore]
2. Adding flavor and chiral symmetry breaking via a

D4 — D4-brane setup

Klebanov,Maldacena; Bigazzi,Casero,Cotrone,latrakis,Kiritsis, Paredes]
Full backreaction in the Veneziano limit: N., Nf — oo, fixed %
[}

Two bulk scalars: A\ <+ TrF?, 7 < §q

4 (ON)?
Sv_qcp = N>M?3 / d5x\/§[R — 3( /\2) - vg(A)}

— N NeM3 [d®x Vig(N)e™ ™\/—det(gap+ 1(N)DaOpT+ w(N) Fap)

Effective model, many potentials V, Vrg, w, k — essential to fix

them by fitting QCD data — predictions for other observables
10/29



Constraining the model at 1 ~ 0

Standard recipe (charged black holes) = description of hot and
dense quark matter

H : — [Giirsoy, Kiritsis, Mazzanti, Nitti 0903.2859;
Fit to lattice data near pu =0 MJ, Jokela, Remes, 1809.07770]

» Many parameters already fixed by requiring qualitative
agreement with QCD

» Results only weakly dependent of remaining parameters

» Good description of lattice data — nontrivial result!

Interaction measure, Baryon number
2+1 flavors susceptibility

[Data: Borsanyi et al. 1309.5258] [Data: Borsanyi et al. 1112.4416]
(e-3p)T* X6l T?
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3. Nuclear matter
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The holographic baryon

Recall the standard AdS/CFT duality:

N =4 SYM is dual to 1B sugra on AdSsxS° .
» Baryons are objects where N, fundamental
strings (<> quarks) can end E
» Obtained by wrapping a D5 brane over the S° w

[Witten hep-th/9805112]
Studied a lot in the Witten-Sakai-Sugimoto (WSS) model
» The wrapped brane (now D4) is diluted in the flavor D8
branes — solitonic configurations of the D8 gauge fields
» In the strong coupling limit

» Solitons localized in the bulk
» Described in terms of 5D Yang-Mills in flat space

Ly ~ —F&/dSX TrFil,
[Kim, Sin, Zahed arXiv:0708.1469;
Hata, Sakai, Sugimoto, Yamato hep-th/0701280; .. .]

» Solution also constructed in “hard-wall” models
[Pomarol, Wulzer]13/29



Solitons in V-QCD: motivation

Shortcomings of the soliton solutions
» The size of the soliton in WSS small wrt (inverse) glueball
mass scale: p ~ 1/(\5MKK) < 1/ Mgk
» The interplay with chiral symmetry breaking not obvious in
WSS, no tachyon field
» In hard wall, the properties of the baryon depend on IR
cutoff/boundary conditions in an ad-hoc manner

In V-QCD, these will be fixed:
» Size of the soliton ~ 1/Aqcp
» Interplay between the soliton and the tachyon (i.e. chiral
symmetry breaking effects) included
» Consistent model for the IR wall: geometry with good IR
singularity with diverging tachyon, all boundary conditions
fixed uniquely by normalizability

Baryon again a soliton of the non-Abelian gauge/fields . .. but
finding it numerically is a technically challenging problem!

[MJ, Kiritsis, Nitti, Préau arXiv:2209.05868, 2212.06747]
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The role of the Chern-Simons term

The Chern-Simons (CS) term, e.g. in the hard-wall model
Scs ~ Nc/dt,u/Tr [F(L) AFW — FR) A FW} ~ Nc/dtu N,

» The instanton number N, gives rise to the charge ~ N.N,

The V-QCD CS term also includes dependence on the tachyon T
» Restrict to the massless case: T = 7U, with 7 real and U
unitary (Ulpary = pion matrix)
» Solve the most general form consistent with symmetry:
Scs x [Qs(T, A) with [MJ, Kiritsis, Nitti, Préau 2209.05868]

Qs5(T,A) = Q5(gauge inv.) + Qs(closed)
Qs(gauge inv.) = Zf ) Q%(U, A)

Qs(closed) = Tr(UTdU) + d[term fixed by anomalies]
» Only the term fixed by anomalies contributes to the charge!

» Functions f; do affect the soliton and interplay with tachyon —

use flat space results [Casero, Kiritsis, Paredes arXiv:hep—th/0702155]15/29



Numerical single baryon solution

» Fit model parameters (simultaneously) to both QCD
thermodynamics and meson mass spectra

» Write an Ansatz (gauge fields+tachyon) consistent with parity

» Solve using a relaxation method

; s
ouMg> 7-PuMs*
0.940

0.822
0.705
0.588
0.470
0.353
0.235
0.118
0.000

-0.117

1 2 3 4
Mo

Nloy) — tiw
R

Spin V-QCD mass | Experimental mass

-0.25

My ~ 1170 MeV My = 940 MeV

-0.50

1
2
5= g Ma ~ 1260 MeV | Ma = 1234 MeV

-0.75

[MJ, Kiritsis, Nitti, Préau 2212.06747]
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Nuclear matter in holographic models

So far | discussed a solution for a single baryon ...

» Dense nuclear matter requires studying many-instanton
solutions

» Extremely challenging!

P Rest of the talk: set Ny = 2 and use a simple approximation

scheme (homogeneous), reasonable at high densities?
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

Al = h(r)o’
[Li,Schmitt,Wang 1505.04886; Elliot-Ripley,Sutcliffe,Zamaklar 1607.04832]

[Kovensky, Poole, Schmitt, 2111.03374]
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Phase diagram at zero quark mass

T T T T
140 Confined, chirally broken i
Confined, chirally broken, baryonic
Deconfined, chirally symmetric
120 First order phase transition H
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Stiff EoS (high c?) in the nuclear mat-
ter phase = helps to pass the bounds
from neutron star observations!

[Ishii, MJ, Nijs, 1903.06169]
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4. Hybrid EoSs
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Combining with other approaches

The V-QCD EoS as such is however not fully satisfactory:
1. Our (homogeneous) approach for nuclear matter only works at
high densities
2. Temperature dependence is trivial in the confined phases, and
therefore also for holographic nuclear matter
» This is a large N, issue, T dependence would arise from loops
Solutions:
1. At low densities for nuclear matter, use “traditional” nuclear
theory results
= choose the Hempel-Schaffner-Bielich model with DD2

interactions (HS(DD2))
[Typel et al. 0908.2344; Hempel, Schaffner-Bielich 0911.4073]

2. Since no reliable results available, borrow T dependence from
basically the simplest reasonable model

= use van der Waals (vdW) gas (protons, neutrons, electrons)

[Ecker, MJ, Nijs, van der Schee 1908.03213]
[Jokela, MJ, Nijs, Remes 2006:01141]
[Demircik, Ecker, MJ 2112.12157]
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Overview of the hybrid model

> V-QCD for quark matter Meson gas
and cold dense nuclear matter

» Van der Waals model extra-
polates dense V-QCD nuclear
matter to finite T

» At low density, choose HS(DD2)

» At medium density, use APR cold EoS (using only HS(DD2)
would lead to tension with neutron star observations)

» Add QCD mesons to HS(DD2), important to describe the
critical point

HS(DD2)

no

Goal: improve the-state-of-the-art of EoSs for neutron star mergers

that include the phase transition
[Demircik, Ecker, MJ 2112.12157]
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Cold EoS and known constraints

» Three choices of EoSs: soft, intermediate, and stiff <

the degrees of freedom of V-QCD left free by fit to lattice data
» Compared to bands of all feasible cold matter EoS:

and holography

100F Nuclear olographic P i 25
JOT40 + 662307 NICER Y0740 +6620
2.0 1
~ 1000 - T
H - / - * Koeppel +
> L . L5 —
z = /
= 100 0 Moy > , NICER J0030+0451
H oft © 1.64 M, T © Mroy
; sol o137 M o 164 M,
z © — soft ©
L) 10 — interm. a 13T M_
—— interm . .
— stiff 0.5 o 115 ;'II,J
— stiff
1 nucl.th L n L L
0.0
100 500 1000 5000 10t 10.5 11.0 11.5 12.0 12.5 13.0 135
Energy density [MeV /fm?] R/km

» Plug EoSs in TOV: neutron star M(R) curves (left plot)
» Compares well with mass/radius observations
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Results: phase transition and critical point

T[MeV]|

¢;/c* at —equilibrium (stiff) /e

0.50
045 12001
040 10008
0.35
0.30
0.25
0.20
0.15
0.10

— stiff

interm.

— soft

Ae[MeVfm™]

s 0.05 0
05 1 5 10 20 40 60 80 100 120 140

s T[MeV]
Low T: strong lst order nuclear to quark matter transition
and mixed phase
High T: weak first order transition &~ crossover
Critical point with
110 MeV < T, <130 MeV

~

480 MeV < ipe < 580 MeV

~

Close to results in other (simpler) holographic
models

[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455123/29



5. (Holographic) Neutron Star
Mergers

24/29



Neutron star mergers

> Significant sources of gravitational radiation
» Microscopic properties of dense matter encoded in GW and

EM signal
M/Mo, q=1
binary (< 1kHz black hole + torus (5 — 6kHz) black hole (6 — 7kHz)
binary (< 1kHz) ~ HMNS/SMNS (2 4kHz)  black hole + torus (5 — 6kHz) black hole (6 — 7kHz)
15+

binary (< 1kHz)  SMNS (diff. rot.)(2 — 4kHz) SMNS T rot.) (1 — 2kHz) black hole/NS?

° @ @

[10° — 107 1] v [1ms —15] v [1—10%g
[picture: Baiotti, Rezzola 1607.03540]

One good event (GW170817) and a few other events already
observed! [LIGO/Virgo, 1710.05832]
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Simulating Binary Neutron Star Mergers

Have to solve the 3+1D General Relativistic hydrodynamics equations:

1
R;UJ - ERgl“/ = 8mGy Tul/ ) vu T = 0, V;LJ'M =0

with initial spacetime and fluid distribution modelling a NS binary system

» Equation of State p = p(np, T, Ye) as input — use V-QCD hybrid
EoS

» Spectral code Frankfurt University/Kadath (FUKA) for initial data
[Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]

» Frankfurt/lllinois (FIL) code for binary evolution with tabulated EoS
[Most, Papenfort, Rezzolla 1907.10328]

» Implemented in the Einstein Toolkit
[http://einsteintoolkit.org]

» Need supercomputing: Project BNSMIC with 100 million core-hours
on HAWK at the High-Performance Computing Center Stuttgart
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- Warm and Cold Quarks

S np/ns

T [MeV]

0
2 k] © [km] v [km]

[Tootle, Ecker, Topolski, Demircik, MJ, Rezzolla 2205.05691]
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Imprint on Gravitational Waves

ot
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= 0
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P> Most significant signature of the phase transition: short
lifetime of remnant
» Early collapse in tension with electromagnetic signal from

GW170817 = constrains the EoS — soft model disfavored 28/



>

4

(Effective) holography, combined with other
approaches, is useful to study dense QCD
Using V-QCD, details work well:
v Precise fit of lattice thermodynamics at p ~ 0
v/ Simultaneous model for nuclear and quark matter
v Stiff EoS for nuclear matter
A new holographic baryon solution
» Coupled to the tachyon in a consistent IR model

An EoS at finite temperature and density using V-QCD +
other models

» Input for merger simulations

State-of-the-art binary neutron star merger simulations
with our EoS

» Production of hot, warm and cold quark matter
Lots of future work, e.g. transport, domain walls
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Thank you!
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The QCD phase diagram

T Quark-gluon

/N Dplasma
? Quark
’ matter
Hadron
gas
Nuclear E})f;;éz?
Vacuum \matter P W

[

Focus in this talk: phases at high density
» Nuclear matter: dense liquid of protons and neutrons —
density 2> density of large nuclei
» Quark matter: densely packed phase of free quarks and gluons

Laboratory experiments challenging (Tocp ~ 10'2 K), in particular
at high density — lots of effort

» Recent and future progress: LHC, RHIC, FAIR, NICA, ... 31/29



Recent progress on dense holographic QCD

For quark matter, use D3-D7 top down model: ¢ = 3p + %ﬁ
[Karch, O'Bannon, 0709.0570]
» N =4 SYM + Ny = 3 probe hypermultiplets in the

fundamental representation
For nuclear matter use with stiff, , and

“extrapolations” of EFT results
[K. Hebeler, J. M. Lattimer, C. J. Pethick, A. Schwenk 1303.4662]

2.5F .
600} - /I:
e 2.0 /
£ Soof _ e ;
> Lo} ’
2 400f =15 /
H = ;
o 3 '/
2 3000 s J
2 = 10f i
8 200} {
o b ..
100} 0.5 ~ee ]
[i]2 : . . . . . . 0.0 . . L
350 400 450 500 550 600 650 8 10 12 14 16
Quark chemical potential [MeV] Radius [km]

» Strong first order nuclear to quark matter transitions
» Neutron stars with “holographic” quark matter core (black
curves) are unstable
[Hoyos, Rodriguez, Jokela, Vuorinen 1603.02943]32/29



Varying the quark mass m one can get quark stars and hybrid stars
[Annala, Ecker, Hoyos, Jokela, Rodriguez-Fernandez, Vuorinen 1711.06244]

» Sizeable deviations from universal I-Love-Q relations
[Yagi, Yunes, 1303.1528]

Including running of the quark mass + color superconductivity
[Bitaghsir Fadafan, Cruz Rojas, Evans, 1911.12705; 2009.14079]

» Possibility of an intermediate xYSB deconfined phase
» Stiffer holographic equations of state (high speed of sound)
» Quark matter cores

Using Einstein-Maxwell-dilaton for quark matter
[Mamani, Flores, Zanchin, 2006.09401]

(Largish) quark stars also studied in Witten-Sakai-Sugimoto and in

D4-D6 models [Burikham, Hirunsirisawat, Pinkanjanarod, 1003.5470

Kim, Shin, Lee, Wan, 1108.6139, 1404.3474]

This talk: towards more realistic model of quark matter?
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Constraining the potentials

In the UV (A — 0):
» UV expansions of potentials matched with perturbative QCD
beta functions = asymptotic freedom and logarithmic flow of

the coupling and quark mass, as in QCD
[Giirsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR (A — o0): various qualitative constraints
» Linear confinement, discrete glueball & meson spectrum,
linear radial trajectories
» Existence of a “good” IR singularity
» Correct behavior at large quark masses
» Working potentials often string-inspired power-laws, multiplied

by logarithmic corrections (i.e, first guesses usually work!)
[Giirsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, latrakis, MJ, Kiritsis

1309.2286, 1609.08922; MJ 1501.07272]

Final task: determine the potentials in the middle, A = O(1)
» Qualitative comparison to lattice/experimental data
34/29



Ansatz for potentials, (x = 1)

9%
Ve(A) = 12 [H m+ﬁ+ Vire /M (A /o)*3/log(1 + )\/)\0)}

W2)\2 -\
Vio(\) = Wo + WA+ —22 &+ W o/ A/ Ao)?
fo(N) o+ Wi +1+)\/)\0+ RE (M o)
wiA/ Ao — _—Xo/Aw. (Ws)\//\o)d'/3
— 1 0 s
Wiy T T T eE log(1 + ws\/Xo)
o 4619
V7 orr20 2T 4665674
W, 4 W,
W1:8+3 0. W2:688+999 A

e 1555274

Fixed UV/IR asymptotics = fit parameters only affect details in
the middle

35/29



Extrapolated EoSs of cold quark matter

The V-QCD cold quark matter result compares nicely to known
constraints:

[MJ, Jokela, Remes, 1809.07770]

» Band of allowed 10°
equations of state
(EoSs) (gray, polytropic
interpolations)

» Stiff, , and

nuclear EoSs
[Hebeler, Lattimer, Pethick, 1

h K 100 500 1000 5000 10*
Schwenk 1303.4662] Energy density [MeV/fm®]

-
- o
(=3 (=3
o o

-
o

Pressure [MeV/fm®]

Approach similar in spirit to studies of the QCD critical point

[DeWolfe,Gubser,Rosen 1012.1864; Knaute,Yaresko,Kampfer 1702.06731;
Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, 1706.00455;

Cai, He, Li, Wang 2201.02004]
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Phase diagram with quark matter

T/MeV
150}
Quark gluon plasma
Black hole
100} Deconfined
Thermal gas Chirally symmetric
50} Confined
Chirally broken
AdS; line
0 L L L = uiMeV
0 100 200 300 400 500

> With quark matter only, expected phase diagram

» Cold QM equation of state (EoS) and location of the T =0
phase transition agree with contraints
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Homogeneous nuclear matter in V-QCD

Nuclear matter in the probe limit: consider full brane action
S = Spgi + Scs where

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

Spel = —%M3Nc Tr/d5x V,ro()\)e’T2 < —det AD) 4 /—det A(R)

A = g + () (1) + SR w(N'(r) + wN)FH

gives the dynamics of the solitons (will be expanded in F(t/R)) and

Ne

Scs = /¢(r)6_bT2dt A (F(L) AFE — FR) A F(R) )

sources the baryon number for the solitons
» Extra parameter, b > 1, to ensure regularity of solutions

Set Nf = 2 and consider the homogeneous SU(2) Ansatz
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

AL = —Ak = h(r)o’
[Ishii, MJ, Nijs, 1903.06169]
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Discontinuity and smeared instantons

With the homogeneous Ansatz A?(r) = h(r)o? baryon number
vanishes for any smooth h(r):

Np /drjr [CS — term] =0

How can this issue be avoided? Q4
» Smearing the BPST soliton in

singular Landau gauge: R _OZL
(A7) ~ / ( =

dr2 +x2 4+ p?)(6r? 4+ x?) oo

62 or
\VOr?+ p? + |or] o ,

» This suggests a solution: introduce o

a discontinuity in h(r) at r = rc t os 1?0 s

~

» The discontinuity sources nonzero baryon charge!
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Van der Waals model

Ideal gas of protons, neutrons and electrons with
» Excluded volume correction for nucleons
Pex(T,{i}t) = pia(T, {fii})
fii = pi — vopex(T,{pit) ~ (i=p, n)
vop ~ volume of one nucleon
» (Mostly) attractive potential term to match with (APR and)
V-QCD at T =0

Poaw (T, {1i}) = pex( T, {pi}) + Ap({ni})

schematically:
Ap({pi}) = PV—QCD(T =0,{pi}) = Pex(T = 0,{pi})

[Rischke, Gorenstein, Stoecker, Greiner, Z Phys. C 51, 485 (1991)]
[Vovchenko, Gorenstein, Stoecker, 1609.03975]

[Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker, 1707.09215]
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Hempel-Schaffner-Bielich DD2 model

A widely used general purpose model for the EoS

» Parameters: temperature, density, charge fraction Y,

Combines two approaches (in thermodynamically consistent way):
» For n < ns, statistical method with excluded volume
corrections and interactions, including light and heavy nuclei
[Hempel, Schaffner-Bielich, 0911.4073]
» For n > ng, relativistic mean field theory of nucleons
interacting with o, p, and w mesons (DD2)
[Typel, Ropke, Klahn, Blaschke, Wolter, 0908.2344]
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Results: Cold Hybrid Equations of State

» Variations in model parameters give rise to the band
» Same (holographic) model for dense nuclear and quark matter

phases!

and

holography
[Ecker, MJ, Nijs, van der
Schee 1908.03213]
[Jokela, MJ, Nijs, Remes
2006:01141]

Pressure [MeV /fm®]

Nuclear
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Th Nuclear Matter Transitic Quark_Ma =
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> > L
1000 ¢ /—4
= e
100 0 Mroy
soft o 1.64 M
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1ok — interm. o 1.15 M
— stiff 1)()1_v(1'\)]>us
(HS)DD2 V-QCD
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100 500 1000
€ [MeV/fm®]

5000

10¢
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WSS with isospin asymmetry and
holographic crust region

» Similar EoS for dense

nuclear matter as V-QCD!
[Kovensky, Poole, Schmitt
2111.03374]
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Results: EoS at Finite T

B-equilibrium

L— —
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1 ‘ ‘
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ny/Mg

» Bands: variation of the V-QCD model
(soft/intermediate/stiff)

> With increasing T, weaker transition at lower pressure
[Demircik, Ecker, MJ 2112.12157]
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Speed of sound and comparison to FRG

Speed of sound (squared) as a function of density

SLy, ny =19 ns

ning

0 2 4 6 8 ‘ 10
P Relatively mild dependence on model parameters
» Similar predictions as with the functional renormalization

group method!
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[Drews, Weise 1610.07568; Otto, Oertel, Schaefer 1910.11929]44/29



esults: critical poi

¢;2/c* at —equilibrium (soft)

T[MeV]

np/ns

110 MeV < T
0.3ns <

~
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TIMeV]

< 130 MeV

¢.?/c* at p-equilibrium (intermediate)
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Critical point is determined by fitting the latent heat in the region
of strong phase transition and extrapolating




Results: thermal index

B-equilibrium
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P Values in expected range

» Low values in the mixed phase
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Rapidly spinning holographic neutron stars

GW190814: LIGO/Virgo observed a merger of a 23My, black hole
with a 2.6 M, compact object
[2006.12611]
> 2.6M falls in the “gap”: a black hole or a neutron star?

intermediate
30 My

GW190814 [1]

» Holographic EoSs easily 250 Myoy .
compatible with the 20 -
neutron star

J0740+6620 [5)
Ref. [9]

MM,

interpretation 1(: Norfuedn /= 1R
» However requires fast -
rotation, f 2 1 kHz 02 > Kepler
0% 12 14 16 18 20

R, [km]

[Demircik, Ecker, MJ, 2009.10731]
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Mechanical Toy Model

[Takami, Rezzolla, Baiotti 1412.3240]
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