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Introduction

• String Theory predicts ( or inspires ) Higher Curvature Corrections to GR 
Einstein-Gauss-Bonnet theory is one of the simplest 
 
 
 
 
 

• only known exact solution:  static spherically symmetric BH 

• No exact solutions like Myers-Perry (Rotating BH) or black string as in GR
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 [Boulware-Deser (1985)]

However

GB correction

?
?



・D=5 equally-rotating BH 

     　　　numerical　　　　　　　 small  approx. 

・D=5 Singly-rotating BH with small  

・black strings numerical+small  approx. in D=5 

                                                                    D=5…10

αGB

Ω
αGB

BHs in EGB theory

Brihaye-Radu (2008) Ma-Li-Lu (2021)

Kim-Cai (2007)

To seek more general analytic sols, 
we adopt the large D effective theory approach

For rotating BHs and black strings,

Numerical or perturbative approaches have been applied

Perturbative sols : only for small GB coupling or small rotation

Kobayashi-Tanaka (2004)

Brihaye-Delsate-Radu (2010)



Large D limit in GR



Black holes in 4D1. Introducution 2. Large D limit 3. Cones & Conifolds BS/BH transition

Black Holes in D = 4

唯一性定理: パラメータ (M,J)の組について解はただ一つ（Kerr解
の族）
トポロジー定理：可能なホライズンのトポロジーは球のみ
ダイナミクス: 安定な準固有振動（QNM)のみ

⇒ D = 4ではブラックホールはとても simple
"black hole has no hair"
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“Black holes have no hair” 
John Wheeler

Black holes are simple

Topology theorem → horizon topology = S2

Hawking (1972)

Uniqueness theorem → Kerr Family ( for vacuum, AF)
Carter (1971), Robinson (1975), Mazur (1982), Bunting (1982)

Perturbation → Quasi-local modes



Black holes in D>4

D>5 BHs
・No known solution generating  technique for general cases

D=5 BHs

・Various horizon topologies：either of  ( or connected sum) 

・No longer unique for given charges (M,J,Q,...)  
・Stationary sols are generated by Inverse-Scattering Method 

S3, S2 × S1, S3/Zp
Galloway-Schoen (2005)

Belinsku-Zakharov (1978), Pomeransky (2005)

Emparan-Figueras 2010

→ Numerical or Analytic approx. (Perturbation, Blackfold, Large D )

but only applicable to D=5 ( or D=5  )× Tp



Large D limit

 
　but how large ?（ cf: large N limit → N=3 ) 
　→ depends on BH topology 
　　Spherical BHs：qualitatively OK even for D ~ 6,7 

 

　　Black Strings：only reliable up to D ~ 12,13 ( critical dimension~13.5) 

　Black hole dynamics 　→　Effective theory@D=∞ ＋ 1/D corrections 
　                                        

S =
1

16πG ∫ dDx −g(R + 2Λ + ℒm)

ac(D → ∞) = 3 ≈ 1.732, ac,D=6 = 1.572, ac,D=7 = 1.714
ex) Threshold spin for axisym. instability of Myers-Perry BH

RS-Tanabe(2015) Dias-Figueras-Monteiro-Santos(2010)

spin a

Myers-Perry

Asnin-Gorbonos-Hadar-Kol-Levi-Miyamoto(2007) 
Emparan-RS-Tanabe(2013)

Consider the spacetime Dimension is “large”

Einstein eq. is dramatically simplified



Localization of Gravity

new small parameter

metric functions are expanded in 1/D as funcs of R

Near horizon

BH

r0

r − r0 ∼ r0/D

r0/D

𝖱 := (r/r0)D−3

D = 20

ϕ(r) = ( r0

r )
D−3

1 2 3 4 5 r/r0
0.2

0.4

0.6

0.8

1.0
ϕ(r)

r0/D

Gravity of BH is confined within thin layer of 1/D

Need new radial coordinate to resolve Near-Horizon region for D ≫ 1

r = r0𝖱
1

D − 3 ≃ r0 (1 +
ln 𝖱
D )

∼ e−D

∼ 𝒪(1)

gμν(r) = gnear,0
μν (𝖱) +

1
D

gnear,1
μν (𝖱) +

1
D2

gnear,2
μν (𝖱) + ⋯

Gradient Hierarchy
∂r ∼ D × 𝖱∂𝖱 = 𝒪(D) ≫ ∂∥Radial gradient is dominant

1 2 3 4 5
r/r0

0.2

0.4

0.6

0.8

1.0



Separation of scales

1. Large D limit 3. Large D EFT 3. NUBS 5. Merger 6. Summary

Non-decoupled/Decoupled dynamics

Due to the hierarchy r0 ! r0/D, the black hole dynamics split to

Non-decoupled dynamics: ω, k ∼ D/r0
propagate off the horizon
Not relevant to horizon dynamics

Decoupled dynamics: ω, k # D/r0
Decoupled from the asymptotic dynamics
Bounded in the near region ⇒ DoF of Horizon dynamics

16 / 40

ω ∼ O(1/r0)

high freq sector

low freq sector

DoF of GW, radiations 
Propagate to asym bdry

Confined in near-horizon region 
DoF of Horizon deformation 
→ reformulated as Large D Effective theory

Potential barrier ∼ O(D2/r2
0)

ω ∼ O(D/r0)

→ Dynamics splits into two sectors

・GW radiation and Horizon dynamics 
      are separated 

・radiating effect is negligible 
       to low freq sector  ·M/M ∝ − D−D

Andrade-Emparan-Licht-Luna(2019)

Emparan-RS-Tanabe(2014)



Black p-brane@large D

ds2 = − 2dtdr − (1 −
rD−p−3

0

rD−p−3 ) dt2 +
1
D

dzidzi + r2dΩ2
D−p−2

ref) Black p-brane in Eddington Finkelstein coordinate

Large D limit with 𝖱 := (r/r0)D−p−3

ds2 = − 2dtdr − (1 −
m(t, z)

𝖱 ) dt2 −
2pi(t, z)

𝖱
dtdzi

D
+

1
D

dzidzi + r2
0dΩ2

D−p−2

rescaled to have kGL ∼ D

This is leading order solution with 

∂r ∼ D × 𝖱∂𝖱 = 𝒪(D) ≫ ∂∥Large radial gradiant

→ Evolution eq. w.r.t R : ODE + src term of O(1/D)

 : arbitrary funcsm(t, z), pi(t, z)

 dependence is dropped in Leading orderx∥ = (t, zi)

Emparan-Shiromizu-RS-Tanabe-Tanaka(2015), 
Emparan-RS-Tanabe(2015), Minwalla+(2015)

zi → zi / D



Large D Effective theory

Black p-brane : Leading order metric sol

m = m0 + δm(k)eΩt+ik⋅z, p = δp(k)eΩt+ik⋅z → Ω(k) = − |k | ± |k |2

Perturbation from Uniform Black String

Effective theory captures GL-instability for 0 ≤ |k | ≤ kGL = 1

ds2 = − 2dtdr − (1 −
m(t, z)

𝖱 ) dt2 −
2pi(t, z)

𝖱
dtdzi

D
+

1
D

dzidzi + r2
0dΩ2

D−p−2

∂tm − ∂i∂im = − ∂ipi

∂t pi − ∂ j∂j pi = ∂i (mδ j
i −

pipj

m ){
 → Simple theory of effective fields { }m(t, z), pi(t, z)
Constraint eqs

Large D Effective Theory ( on black p-brane)



Hydro-elastic complementarity

 : covariant div ∇i δijEffective theory in Hydrodynamic form

Viscosity

Horizon velocity field vi(t, x) := (pi − ∂im)/m

Negative
pressure

GL instability

Young’s modulus

Prebend over-bending 
Stable Non-uniform phase

Physical interpretation of Large D effective theory

(m, pi) → (m, vi)

∂tm + ∇i(mvi) = 0, ∂t(mvi) + ∇j(mvivj + τij) = 0

τij := − mδij − 2m∇(ivj) − m∇i ∇jlog m

Emparan-Izumi-Luna-RS-Tanabe(2017)

Black p-brane@D=∞ = complex of fluid and elastic body



2nd law in Large D ET

S1(t) := ∫ (−
1
2

mv2 −
1

2m
(∂m)2 + m log m) dpx

∂tS1 := ∫ 2m∂(ivj)∂(iv j)dpx ≥ 0

LO effective equation

difference with Mass up to   → Entropy functional for D−1 m(t, z), vi(t, z)

Entropy is produced by viscous terms

Entropy = const. × Mass +
S1

D

Black p-brane entropy

SBH ∝ M
D − 2
D − 3
BH ≃ MBH + O(D−1)

cf) Schwarzschild

Entropy conserves at LO in 1/D
conserve

Andrade-Emparan-Jansen-Licht-Luna-RS (2020)

LO variables

2nd Law



blob approximation

∂tm + ∇i(mvi) = 0, ∂t(mvi) + ∇j(mvivj + τij) = 0
ex) Black 2-brane effective theory

m(x, y) = exp (−
x2 + y2

2(1 + a2) )

zi = (x, y)

Following spinning Gaussian profile is also a solution

Effective theory of Black p-brane includes compact BH

no translation symm. m(x, y) → 0 ( |x | , |y | → ∞)

vi(x, y) =
a

1 + a2
(y, − x)

θ =
|z |

D

Figure 1: Black holes as gaussian lumps. Driven by the GL instability, a black membrane develops

a bulge where most of its area and mass are concentrated with a profile that, when D ! 1, is a

gaussian, as shown in the figure. Representing Schwarzschild and Myers-Perry black holes in this

manner accurately captures much of their physics, including their quasinormal vibrations.
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Myers-Perry BH

Corresponds to Near-poler region of Myers-Perry BH

× D

spin a

spin a



2+1 Blob simulation
Andrade-Emparan-Licht-Luna (2018), (2019)

dynamics of BHs → motion of “blobs” on black 2-brane

Figure 1: Black holes as gaussian lumps. Driven by the GL instability, a black membrane develops

a bulge where most of its area and mass are concentrated with a profile that, when D ! 1, is a

gaussian, as shown in the figure. Representing Schwarzschild and Myers-Perry black holes in this

manner accurately captures much of their physics, including their quasinormal vibrations.
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Figure 1: Black holes as gaussian lumps. Driven by the GL instability, a black membrane develops

a bulge where most of its area and mass are concentrated with a profile that, when D ! 1, is a

gaussian, as shown in the figure. Representing Schwarzschild and Myers-Perry black holes in this

manner accurately captures much of their physics, including their quasinormal vibrations.
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∂tm = …, ∂t px = …, ∂t py = …

Much easier than full numerical analysis
Effective theory→ 2+1 PDE for (m, px, py)

mass dist. m(t, x, y)

You need just laptop !

 very thin branem ≈ 0



2+1 Blob simulation1 Introduction

Recently [1] we have employed an e↵ective theory of black holes in the limit of a large num-

ber of spacetime dimensions, D ! 1, previously developed in [2], in order to e�ciently

demonstrate processes in which two black holes collide, merge, and then—for su�ciently

large total angular momentum—evolve to create a naked singularity, thus violating Cosmic

Censorship (CC) [3]. Afterwards, we have argued, the system plausibly ‘evaporates’ the

singularity, leaving two separate black holes that fly away from each other. The process

is illustrated in figure 1.

Figure 1: Two spinning black holes collide and form a rotating black bar, which then breaks up

into two outgoing black holes di↵erent than the initial ones (the figures are high-contrast density

plots of the mass density obtained from the numerical simulation of a collision in the large-D

e↵ective theory).

The purpose of the present article is twofold: first, to provide a more detailed analysis of

black hole collisions using the large-D e↵ective theory, including initially spinning Myers-

Perry (MP) black holes [4], and elaborating on a number of issues relevant to the violation

of CC which were only cursorily discussed in [1]. Second, to extend our previous results

on large-D black hole dynamics by considering the time evolution of the instabilities of

black holes and black bars with large spins. Ultraspinning black hole instabilities were
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computational domains, with side L. The x and y are stan-
dard Cartesian coordinates, upon which we impose Sommer-
feld boundary conditions at the edges of the domain. At z= 0
we impose the regularity conditions as required by the Modi-
fied Cartoon Method, while at z = L we impose Sommerfeld
boundary conditions. We perform the time evolution using
the fourth order Runge-Kutta method (RK4). The remaining
parameters of our simulations are as in [17].

Results.—For both D = 6,7 we have explored the space
of parameters a, v, y0 by running some low resolution sim-
ulations until we observe the formation of a long bar-like
horizon after the merger. As mentioned above, no fine tun-
ing is required in order to achieve such states. Out of the
parameters explored, we have selected three study cases to
continue the evolution further with the aid of higher resolu-
tion simulations. We shall discuss in the main text the D = 7
case, for which we have been able to follow the late stages of
the evolution for longer times. We discuss the D = 6 cases
in the Supplementary Material, for which we have obtained
qualitatively similar results.

Henceforth we measure time and distance in dimension-
less form using the mass parameter µ of a single member
of our BH binary. Specifically, we display time in the form
of t = t̃/µ1/(D�3), where t̃ is coordinate time in geometric
units, and likewise for radius r and Cartesian coordinates
x, y, z. Our D = 7 collision is characterized by initial data
with parameters v = 0.5, a = 0.7, y0 = 1.1, x0 = 10. Note
that the spin is within the stability bound amax = 0.74 re-
ported in [14]. First, we have performed a simulation in a
small domain of cubic size L = 64, including up to 10 lev-
els. This simulation, displayed in Fig. 1, clearly shows that
a dumbbell-shaped horizon forms after merger, consisting of
two spherical blobs joined by a thin tube. Moreover, we ob-
serve the appearance of spatial modulation along the hori-
zon, characteristic of the GL instability. At the same time,
the length of the dumbbell increases making the middle tube
thinner, which accelerates the effect of the instability. Con-
tinuing the evolution further, we have been able to see the
formation of two generations of satellites, e.g., small spher-
ical beads joined by thin tubes, closely resembling the late
stages of unstable strings and ultra-spinning BHs. Our nu-
merics have allowed us to observe the onset of a third gener-
ation, in which all string segments present in the second gen-
eration, develop their own local GL instability. Note that in
7D, the critical value for the width over length ratio of strings
which are GL unstable is rGL,7D ⌘ widht/length ⇡ 0.5. We
have explicitly checked that the string segments present in
our first and second generation are well below this value.

In order to extract the gravitational waves, we have in-
creased the size of the computational domain to L = 256,
adding two levels in order to achieve equal resolutions at
the horizons of the BHs. We have extracted the waves at
radii R = 25.0,27.5,30.0 and observed the expected linear
behaviour: all three wave forms match in all channels af-
ter the corresponding time shifts. We display the results for
the D = 7 case in Fig. 2 Interestingly, we observe an initial
regime in which small waves arrive for which this matching
property does not hold. This corresponds to the initial con-
straint violations from superposing the two MP BHs and to

FIG. 1. Snapshots of the 7D evolution with v = 0.5, a = 0.7, b =
2.2, at times Dt = t � tmerger. They correspond to: initial condition,
merger, bar formation, first generation, second generation, latest
stage. We show a spatial length of 10 units on the bottom left panel.

the adjustment of the gauge, and it is unphysical.
In Fig. 2, we observe the first physical peak of radiation

produced in the m= 2 channel for `5 = 2,4 at t�tmerger ⇠ 30,
corresponding to the “collision” of the two BHs, when a
common enveloping horizon first appears. As shown in the
second panel in Fig 1 (see also the first panels in Figs. 5 and
6) this common horizon is dumbbell shaped. Furthermore,
this resulting BH is rotating since it acquires part of the total
angular momentum of the initial state, whilst some of the an-
gular momentum has already been radiated away. At some
point, which depends on the initial total angular momentum
(and the number of dimensions D), the BH stops rotating and
the neck connecting the two bulges starts expanding, produc-
ing a second radiation peak; in the D = 7 example of Fig. 2,
this happens at around t � tmerger = 7.5. We confirm this pic-
ture with a simple model; see Supplementary Material.

Up until and including the second peak, the total radiated
energy is about 0.01% of the Arnowitt-Deser-Misner (ADM)
mass, see Fig 7, which follows from the data in Fig. 2 us-
ing eq. (24). We expect radiation emitted at later stages to
amount to a smaller fraction, since the dynamics of the outer
blobs is quasi-stationary, and the GL cascade taking place
in the strings produces very little radiation ([17] reports that
less than 5% of the total ADM mass is radiated during the
last stage of GL in the 6D evolution of ultraspinning BHs).
We discuss this issue further in the Supplementary Material,
where we provide a crude upper bound. In summary, the
effects of radiation are sufficiently suppressed in D � 6, so
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Holography at Large D

• Holographic superconductor@D=∞  

• Fluid/Gravity@D=∞  

• Various AdS BHs are found in Global AdS 
                  <=>   thermal bath with or without BHs in  

• holographic collapse/evapolation, etc…, in Global AdS + KR-branes 

Sn+1

Large D is also useful for holography

Emparan-Licht-Tomasevic-RS-Benson (2021) 
Licht-RS-Benson (2022) 
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Figure 1. Sketch of the results from the large D effective theory of AdS black strings for K = 1.
Black holes which are tangent to a r-constant surface at z = 0 can be described as the solution with
different mass density profiles in the effective theory around z = 0. For other cases, we must find
the embedding shape r = r0(z) by solving the soap bubble equation [17].

In this paper, we apply the large D limit [14–16] towards the study of AdS strings.
In this limit, the near-horizon physics of black holes decouple from the asymptotic region,
providing a set of effective equations that can be studied much more easily than the full
Einstein equation at finite D [17–19]. So far, the large D effective theory has been useful
for studying various black holes/brane spacetimes. In particular, the dynamics of the
asymptotically flat black string is understood at a nonlinear level [17, 20–23]. We will
obtain a set of effective dynamical equations that govern the behaviour of AdS black strings.
By focusing on the dynamics in the short wavelength of O

(
1/

√
D
)
around z = 0, these

effective equations properly capture nonlinear dynamics of the AdS black strings [13].1 In
the present work, we more thoroughly investigate the various stationary solutions of these
equations and study their linear stability.

Using the large D effective theory approach, we obtain the following results (figure 1):

1. Possible static deformations of the black strings/funnels are studied. By solving the
effective equation shown in ref. [13], we obtain not only deformed strings/funnels,
but also an analytic Gaussian blob and droplets corresponding to different boundary
conditions at AdS boundaries. We also study the thermodynamics and stability of the
solutions. In particular, we analytically estimate the critical dimension (analogous
to ref. [21] in flat space) for weakly non-uniform strings/funnels, above which some
non-uniform solutions are thermodynamically preferred.

2. We also study general horizon shapes embedded in global AdS that cannot be described
by the large D effective theory on the uniform strings/funnels. The embedded horizon

1It is known that the nonlinear dynamics of rotating black holes is captured well by zooming in on the
near-axis region, where the rotating solutions are described as Gaussian solutions, or Gaussian blobs in the
effective theory of the black brane [24–30]. Our approach in the AdS can be seen as a version of this blob
approximation.
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Figure 3. Two scenarios for funnel black hole evaporation, triggered by di↵erent perturbations.
Upper: Both brane black holes evaporate into the bulk. Lower: One brane black hole evaporating
into the other.

Figure 4. Small brane black hole connected to a large, colder black bath which induces black hole
evaporation.

Let us add that the dynamics of small AdS black holes can be quite richer than

indicated above. It involves the presence of thin black funnels in the bulk, which are string-

like horizons that can be unstable with a tendency to pinch. If the horizon pinches o↵ to

zero size, then the connection between the brane black hole and the bath will be broken

and further evaporation will be hindered. Thus, the evolution of the system depends

on the competition between the rate of energy flow along the funnel—which drives the

evaporation—and the rate at which the funnel pinches—which leads to a burst signal that,

when it reaches the boundary, indicates the severing of the evaporation channel [24]. This

is another instance of a fascinating phenomenon from the boundary perspective, which

does not have any known analogue in free or weakly coupled field theory.

Finally, braneworld holography has been revisited in recent times in order to derive the

Page curve [34] followed by the entanglement entropy of the radiation emitted by a black

– 6 –

and the Einstein-AdS equations are solved when the functions m(t, x) and p(t, x) satisfy

@tm+ (@x + x) (p� @xm) = 0 , (2.9)

@tp� (@x + x)

✓
@xp�

p
2

m

◆
+ p�

✓
1 +

1

r
2
0

◆
@xm = 0 . (2.10)

These two equations provide us with an e↵ective theory of the dynamics of horizons in AdS.

Exact solutions and linear instability

A detailed study of the derivation of these equations, their solutions and their properties, will

be given elsewhere []. Here we will only discuss the main features, starting from their simplest

solution, namely, the black string or uniform funnel (2.5),

m = m0 , p = 0 . (2.11)

To study its linear stability, we look for normalizable perturbations of the form5

m(t, x) = m0 + ✏ e
⌦t
f(x)e�x

2
/2
, p(t, x) = ✏ e

⌦t
g(x)e�x

2
/2
, (2.12)

where f(x) and g(x) are finite polynomials. When we plug (2.12) in the e↵ective equations (2.9)

and (2.10), the requirement that the polynomials truncate at finite order determines that the

lowest mode, with f = 1, g = �(1 + ⌦)x, has a growth rate

⌦ = �2±
q
2 + r

�2
0 . (2.13)

This mode grows exponentially when

r0 <
1
p
2
. (2.14)

This is then the instability regime for AdS black strings in the limit n ! 1. More generally,

there exist linearized modes that become unstable when r0 is smaller than a stability threshold

at

r0 =
1

p
2 + k

, k = 0, 1, 2, . . . (2.15)

For these values of r0 we find zero modes with

f(x) = Hk(x/
p
2) , g(x) = �

1
p
2
Hk+1(x/

p
2) (2.16)

(where Hk are Hermite polynomials) which solve the linearized equations with ⌦ = 0.

Another exact solution of (2.9) and (2.10) is the static ‘gaussian blob’

m = m0 e
�(1+r

�2
0 )x2

/2
, p = @xm. (2.17)

5The gaussian factors ultimately originate from cosn(x/
p
n) ' e�x2/2; more details will be given in [].
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EGB gravity at Large D



Overview: EGB-BH@Large D

• Simplification at large D comes from localization of gravity around BHs 
where Near-horizon geometry is simplified ( and so is the analysis on it ) 
 
This property is merely about local geometric structure 
→ Should be applicable regardless of background geom., and theories 

• We already knew Large D can be applied to several EGB-BHs:  
 
black string                    black ring,             rotating BH ( equal ang. mom.)

 Chen-Li-Zhang (2018)                RS-Tomizawa (2022)Chen-Li-Zhang (2017) 
RS-Tomizawa (2022)

Large D can be also useful tool beyond GR !

today’s topic



Scaling of  at Large DαGB

TTI-MATHPHYS-11

Rotating black holes at large D in Einstein-Gauss-Bonnet theory

Ryotaku Suzuki∗ and Shinya Tomizawa†

Mathematical Physics Laboratory Toyota Technological Institute
Hisakata 2-12-1, Nagoya 468-8511, Japan

(Dated: March 4, 2022)

Applying the largeD approach to the Einstein-Gauss-Bonnet theory, we construct equally rotating
black hole solutions in odd dimensions. This provides the first example of the analytic solutions
which describe not-slowly rotating black holes. For the next-leading order solutions in the 1/D
expansion, we discuss the physical aspects such as thermodynamics and the phase diagram.

PACS numbers: 04.50.Kd, 04.50.-h, 04.70.Bw, 04.50.Gh

The Einstein-Gauss-Bonnet (EGB) theory is a simplest
extension of the Einstein theory to the theory with higher
curvature terms, which describes string theory inspired
ultraviolet corrections to the Einstein gravity [1]. In par-
ticular, the EGB theory in D = 5 can be regarded as the
low energy limit of string theory when the theory is di-
mensionally reduced from D = 11 to D = 5 by compact-
ifying six of the eleven dimensions in compact Calabi-
Yau threefold [2, 3]. Furthermore, such quadratic terms
of curvatures appears as a 1-loop correction of heterotic
string theory [1]. Thus, the physics of black holes in the
D = 5 EGB theory has been the subject of increased at-
tention from the reason that it provides us some insight
on a quantum aspect of black holes.

The first exact solutions of black holes in the EGB
theory were found by Boulware and Deser for a spher-
ically symmetric and static case in Ref. [4]. The static
solutions were also generalized to an electrically charged
case [5, 6]. However, so far, finding rotating black hole
solutions in the EGB theory has been considered to be
a hard and unsolved problem, since the Kerr-Schild for-
malism which is a powerful tool for finding rotating black
hole solutions cannot work at all in this EGB theory. In
spite of the technical difficulty, there are some attempts
to construct rotating EGB black hole solutions. Equally
rotating black hole solutions in D = 5 were obtained as
numerical solutions [7], and slowly rotating charged AdS
black hole solutions in D ≥ 5 were obtained as perturba-
tive and analytic solutions [8].

The large dimension limit or, large D limit [9–11] is a
useful approximation, which largely simplifies the black
hole analysis in higher dimensions. Because of the local-
ization of the gravity at large D, the dynamical degrees
of freedom of the horizon are confined within a thin layer
of near-horizon region, which form an effective theory in-
sensitive to the global structure of the spacetime [12–15].

So far the large D effective theory approach has been
a viable tool to study the black hole dynamics not only

∗Electronic address: sryotaku@toyota-ti.ac.jp
†Electronic address: tomizawa@toyota-ti.ac.jp

in general relativity (GR), but also in the EGB the-
ory. The (in)stabilities of the static EGB black holes [16]
and black strings [17] were studied by using the large D
approach, in which the black string instability is weak-
ened by the Gauss-Bonnet (GB) term for the small GB
coupling, whereas enhanced for the large GB coupling.
Moreover, black ring solutions at large D in the EGB
theory were also studied [18], where they obtained the
quasi-normal modes of the EGB black ring and showed
that the thin EGB black ring becomes unstable against
non-axisymmetric perturbation.

In this letter, we construct new rotating black hole
solutions with equal angular momenta in an odd dimen-
sional EGB theory by using the 1/D-expansion up to the
next-to-leading order (NLO). The assumption of equal
angular momenta in odd dimensions enhances a space-
time symmetry to a class of cohomogeneity one. The
further key assumption is that the metric of a rotating
black hole at D → ∞ is locally similar to that of the
boosted black string, which was first noticed in the stud-
ies of rotating black holes in GR [19, 20]. By imposing
this assumption, the leading order equations are decou-
pled to be simply solvable. The thermodynamic property
is also studied up to the relevant order in 1/D.

The action of the EGB theory is given by

SEGB =
1

16πG

∫ √
−g (R+ αGBLGB) d

Dx, (1)

where the GB Lagrangian is

LGB = R2 − 4RµνR
µν +RµνρσR

µνρσ. (2)

The equations of motion become

Rµν +
1

2
Rgµν + αGBHµν = 0, (3)

where

Hµν = −1

2
LGBgµν + 2RRµν − 4RµαR

α
ν

− 4RµανβR
αβ + 2RµαβγRν

αβγ . (4)

The outcome of the largeD limit depends on which scales
are fixed in the limit, i.e., which scale of physics we
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approach, in which the black string instability is weak-
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Moreover, black ring solutions at large D in the EGB
theory were also studied [18], where they obtained the
quasi-normal modes of the EGB black ring and showed
that the thin EGB black ring becomes unstable against
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sional EGB theory by using the 1/D-expansion up to the
next-to-leading order (NLO). The assumption of equal
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The outcome of the largeD limit depends on which scales
are fixed in the limit, i.e., which scale of physics we

We must determine how the GB coupling scales at large D

Most interesting regime:  
                      EH term～GB term@D→∞ → αGB = O(D−2)

NOTE: EH GB or EH GB cases 
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are going to focus on. To obtain the black hole hori-
zon, we must fix the length scale of the horizon ra-
dius r0 at O(1). With the fixed horizon scale r0, the
scalar curvature around the horizon has the magnitude of
O(D2/r20). We are interested in the intermediate regime
in which the Einstein-Hilbert and GB terms become com-
parable R ∼ αGBLGB ∼ αGBR2, otherwise the equa-
tion of motion reduces to that of the Einstein or pure
GB theory. Thus, we assume the GB coupling scales as
αGB = O(r20/D

2) at large D.

Even for the large D limit, it is not so easy to solve
the Einstein equations under the general rotating ansatz
since the metric functions are non-linearly coupled al-
ready at the leading order. Instead, we assume that
the EGB rotating black holes have the same property
as GR rotating black holes, i.e., the large D limit of the
Myers-Perry metric reduces to that of the boosted black
brane [19, 20]. For instance, in the Einstein-Maxwell the-
ory, the same strategy has been successful in construct-
ing charged rotating black holes in the large D limit both
with a single angular momentum [21] and equal angular
momenta [22].

We thus start from the following metric ansatz of
equally rotating black holes in D = 2n + 3 dimensions
with the Eddington-Finkelstein gauge

ds2 = −A(r)(e(0))2 + 2U(r)e(0)e(1) + 2C(r)e(0)e(2)

+H(r)(e(2))2 + r2dΣ2, (5)

where dΣ2 is the Fubini-Study metric on CPn and other
tetrad bases are defined by

e(0) =
dt− Ωr(dφ+A)√

1− Ω2
, e(2) =

r(dφ+A)− Ωdt√
1− Ω2

,

e(1) = dr, (6)

with the dimensionless spin parameter Ω which produces
the local Lorentz boost in the subspace (dt, r(dφ + A)).
Here A is the Kähler potential of CPn. In what follows,
we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of
CPn. We impose that the metric reduces to that of the
boosted black brane at n → ∞ 1

C = O(n−1), H = 1 +O(n−1). (7)

As the asymptotic boundary condition, we impose

A → 1, U → 1, C → 0, H → 1 (8)

at r → ∞, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large n

1 The assumption C = O(n−1) alone gives H,U = const+O(n−1)
in GR. However, we could not decouple the leading order equa-
tion only with the assumption for C in the EGB theory.

limit, we introduce the following often-used radial coor-
dinate

R := r2n. (9)

Here we set the horizon scale r0 = 1 using the scaling
degree of freedom. The metric components are expanded
by 1/n as a function of R

A =
∞∑

i=0

1

ni
Ai(R), U =

∞∑

i=0

1

ni
Ui(R),

C =
∞∑

i=0

1

ni
Ci(R), H =

∞∑

i=0

1

ni
Hi(R). (10)

To keep the Einstein-Hilbert and GB terms comparable
at the large n limit in eq. (3), we introduce the rescaled
GB coupling parameter which remains finite at n → ∞,

α := (2n)2αGB. (11)

With the assumption (7), we can decouple the leading
order equation, which yields

A0 = 1 +
1

2α
− 1

2α

√
1 +

4α(α+ 1)m

R
,

U0 = 1, C0 = 0, H0 = 1, (12)

where the integration constant m introduces the horizon
at R = m. As one can see in the form of A0, the lead-
ing order metric, therefore, reduces to the boosted black
string metric at large D as in GR [17]. Note that, for the
existence of the horizon, we only consider the parameter
region α > −1/2.

To obtain the information for D < ∞, we need to solve
the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as

ΩH = Ωm− 1
2n (14)

in all order of 1/n. In the original coordinate, the horizon
radius is given by

rH := m
1
2n . (15)

For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
the derivation, it is convenient to introduce an auxiliary
variable [18]

X :=

√
1 +

4α(α+ 1)m

R
, (16)
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condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set
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radius is given by
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dius r0 at O(1). With the fixed horizon scale r0, the
scalar curvature around the horizon has the magnitude of
O(D2/r20). We are interested in the intermediate regime
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brane [19, 20]. For instance, in the Einstein-Maxwell the-
ory, the same strategy has been successful in construct-
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with a single angular momentum [21] and equal angular
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+H(r)(e(2))2 + r2dΣ2, (5)

where dΣ2 is the Fubini-Study metric on CPn and other
tetrad bases are defined by

e(0) =
dt− Ωr(dφ+A)√

1− Ω2
, e(2) =

r(dφ+A)− Ωdt√
1− Ω2

,

e(1) = dr, (6)
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Here A is the Kähler potential of CPn. In what follows,
we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of
CPn. We impose that the metric reduces to that of the
boosted black brane at n → ∞ 1

C = O(n−1), H = 1 +O(n−1). (7)

As the asymptotic boundary condition, we impose

A → 1, U → 1, C → 0, H → 1 (8)

at r → ∞, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large n

1 The assumption C = O(n−1) alone gives H,U = const+O(n−1)
in GR. However, we could not decouple the leading order equa-
tion only with the assumption for C in the EGB theory.
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at R = m. As one can see in the form of A0, the lead-
ing order metric, therefore, reduces to the boosted black
string metric at large D as in GR [17]. Note that, for the
existence of the horizon, we only consider the parameter
region α > −1/2.

To obtain the information for D < ∞, we need to solve
the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as
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in all order of 1/n. In the original coordinate, the horizon
radius is given by
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1
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For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
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CPn. We impose that the metric reduces to that of the
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Ansatz

Assumption: LO-metric ≈ static BH ( with boosted frame)

C(r) = 𝒪(1/n), H(r) = 1 + 𝒪(1/n)
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the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as

ΩH = Ωm− 1
2n (14)

in all order of 1/n. In the original coordinate, the horizon
radius is given by

rH := m
1
2n . (15)

For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
the derivation, it is convenient to introduce an auxiliary
variable [18]

X :=

√
1 +

4α(α+ 1)m

R
, (16)

2

are going to focus on. To obtain the black hole hori-
zon, we must fix the length scale of the horizon ra-
dius r0 at O(1). With the fixed horizon scale r0, the
scalar curvature around the horizon has the magnitude of
O(D2/r20). We are interested in the intermediate regime
in which the Einstein-Hilbert and GB terms become com-
parable R ∼ αGBLGB ∼ αGBR2, otherwise the equa-
tion of motion reduces to that of the Einstein or pure
GB theory. Thus, we assume the GB coupling scales as
αGB = O(r20/D

2) at large D.

Even for the large D limit, it is not so easy to solve
the Einstein equations under the general rotating ansatz
since the metric functions are non-linearly coupled al-
ready at the leading order. Instead, we assume that
the EGB rotating black holes have the same property
as GR rotating black holes, i.e., the large D limit of the
Myers-Perry metric reduces to that of the boosted black
brane [19, 20]. For instance, in the Einstein-Maxwell the-
ory, the same strategy has been successful in construct-
ing charged rotating black holes in the large D limit both
with a single angular momentum [21] and equal angular
momenta [22].

We thus start from the following metric ansatz of
equally rotating black holes in D = 2n + 3 dimensions
with the Eddington-Finkelstein gauge

ds2 = −A(r)(e(0))2 + 2U(r)e(0)e(1) + 2C(r)e(0)e(2)

+H(r)(e(2))2 + r2dΣ2, (5)

where dΣ2 is the Fubini-Study metric on CPn and other
tetrad bases are defined by

e(0) =
dt− Ωr(dφ+A)√

1− Ω2
, e(2) =

r(dφ+A)− Ωdt√
1− Ω2

,

e(1) = dr, (6)

with the dimensionless spin parameter Ω which produces
the local Lorentz boost in the subspace (dt, r(dφ + A)).
Here A is the Kähler potential of CPn. In what follows,
we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of
CPn. We impose that the metric reduces to that of the
boosted black brane at n → ∞ 1

C = O(n−1), H = 1 +O(n−1). (7)

As the asymptotic boundary condition, we impose

A → 1, U → 1, C → 0, H → 1 (8)

at r → ∞, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large n

1 The assumption C = O(n−1) alone gives H,U = const+O(n−1)
in GR. However, we could not decouple the leading order equa-
tion only with the assumption for C in the EGB theory.

limit, we introduce the following often-used radial coor-
dinate

R := r2n. (9)

Here we set the horizon scale r0 = 1 using the scaling
degree of freedom. The metric components are expanded
by 1/n as a function of R

A =
∞∑

i=0

1

ni
Ai(R), U =

∞∑

i=0

1

ni
Ui(R),

C =
∞∑

i=0

1

ni
Ci(R), H =

∞∑

i=0

1

ni
Hi(R). (10)

To keep the Einstein-Hilbert and GB terms comparable
at the large n limit in eq. (3), we introduce the rescaled
GB coupling parameter which remains finite at n → ∞,

α := (2n)2αGB. (11)

With the assumption (7), we can decouple the leading
order equation, which yields

A0 = 1 +
1

2α
− 1

2α

√
1 +

4α(α+ 1)m

R
,

U0 = 1, C0 = 0, H0 = 1, (12)

where the integration constant m introduces the horizon
at R = m. As one can see in the form of A0, the lead-
ing order metric, therefore, reduces to the boosted black
string metric at large D as in GR [17]. Note that, for the
existence of the horizon, we only consider the parameter
region α > −1/2.

To obtain the information for D < ∞, we need to solve
the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as

ΩH = Ωm− 1
2n (14)

in all order of 1/n. In the original coordinate, the horizon
radius is given by

rH := m
1
2n . (15)

For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
the derivation, it is convenient to introduce an auxiliary
variable [18]

X :=

√
1 +

4α(α+ 1)m

R
, (16)

1/n-expansion with       (D=2n+3)𝖱 := r2n (rH = 1) α := (2n)2αGB

Ansatz

Assumption: LO-metric ≈ static BH ( with boosted frame)

C(r) = 𝒪(1/n), H(r) = 1 + 𝒪(1/n)

S2n+1

EGB equation decouples to separate ODEs w.r.t  
→ Integrable

𝖱



Leading order solution

2

are going to focus on. To obtain the black hole hori-
zon, we must fix the length scale of the horizon ra-
dius r0 at O(1). With the fixed horizon scale r0, the
scalar curvature around the horizon has the magnitude of
O(D2/r20). We are interested in the intermediate regime
in which the Einstein-Hilbert and GB terms become com-
parable R ∼ αGBLGB ∼ αGBR2, otherwise the equa-
tion of motion reduces to that of the Einstein or pure
GB theory. Thus, we assume the GB coupling scales as
αGB = O(r20/D

2) at large D.

Even for the large D limit, it is not so easy to solve
the Einstein equations under the general rotating ansatz
since the metric functions are non-linearly coupled al-
ready at the leading order. Instead, we assume that
the EGB rotating black holes have the same property
as GR rotating black holes, i.e., the large D limit of the
Myers-Perry metric reduces to that of the boosted black
brane [19, 20]. For instance, in the Einstein-Maxwell the-
ory, the same strategy has been successful in construct-
ing charged rotating black holes in the large D limit both
with a single angular momentum [21] and equal angular
momenta [22].

We thus start from the following metric ansatz of
equally rotating black holes in D = 2n + 3 dimensions
with the Eddington-Finkelstein gauge

ds2 = −A(r)(e(0))2 + 2U(r)e(0)e(1) + 2C(r)e(0)e(2)

+H(r)(e(2))2 + r2dΣ2, (5)

where dΣ2 is the Fubini-Study metric on CPn and other
tetrad bases are defined by

e(0) =
dt− Ωr(dφ+A)√

1− Ω2
, e(2) =

r(dφ+A)− Ωdt√
1− Ω2

,

e(1) = dr, (6)

with the dimensionless spin parameter Ω which produces
the local Lorentz boost in the subspace (dt, r(dφ + A)).
Here A is the Kähler potential of CPn. In what follows,
we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of
CPn. We impose that the metric reduces to that of the
boosted black brane at n → ∞ 1

C = O(n−1), H = 1 +O(n−1). (7)

As the asymptotic boundary condition, we impose

A → 1, U → 1, C → 0, H → 1 (8)

at r → ∞, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large n

1 The assumption C = O(n−1) alone gives H,U = const+O(n−1)
in GR. However, we could not decouple the leading order equa-
tion only with the assumption for C in the EGB theory.

limit, we introduce the following often-used radial coor-
dinate

R := r2n. (9)

Here we set the horizon scale r0 = 1 using the scaling
degree of freedom. The metric components are expanded
by 1/n as a function of R

A =
∞∑

i=0

1

ni
Ai(R), U =

∞∑

i=0

1

ni
Ui(R),

C =
∞∑

i=0

1

ni
Ci(R), H =

∞∑

i=0

1

ni
Hi(R). (10)

To keep the Einstein-Hilbert and GB terms comparable
at the large n limit in eq. (3), we introduce the rescaled
GB coupling parameter which remains finite at n → ∞,

α := (2n)2αGB. (11)

With the assumption (7), we can decouple the leading
order equation, which yields

A0 = 1 +
1

2α
− 1

2α

√
1 +

4α(α+ 1)m

R
,

U0 = 1, C0 = 0, H0 = 1, (12)

where the integration constant m introduces the horizon
at R = m. As one can see in the form of A0, the lead-
ing order metric, therefore, reduces to the boosted black
string metric at large D as in GR [17]. Note that, for the
existence of the horizon, we only consider the parameter
region α > −1/2.

To obtain the information for D < ∞, we need to solve
the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as

ΩH = Ωm− 1
2n (14)

in all order of 1/n. In the original coordinate, the horizon
radius is given by

rH := m
1
2n . (15)

For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
the derivation, it is convenient to introduce an auxiliary
variable [18]

X :=

√
1 +

4α(α+ 1)m

R
, (16)

ds2 ≃ − A0(e(0))2 + 2e(0)e(1) + (e(2))2 + dΣ2 + 𝒪(n−1)

Identical to D=2n+3 Boulware-Deser @large D

With e(0) ↔ dt, e(1) ↔ dr, e(2) ↔ dϕ + 𝒜

(as expected)



Higher order corrections

2

are going to focus on. To obtain the black hole hori-
zon, we must fix the length scale of the horizon ra-
dius r0 at O(1). With the fixed horizon scale r0, the
scalar curvature around the horizon has the magnitude of
O(D2/r20). We are interested in the intermediate regime
in which the Einstein-Hilbert and GB terms become com-
parable R ∼ αGBLGB ∼ αGBR2, otherwise the equa-
tion of motion reduces to that of the Einstein or pure
GB theory. Thus, we assume the GB coupling scales as
αGB = O(r20/D

2) at large D.

Even for the large D limit, it is not so easy to solve
the Einstein equations under the general rotating ansatz
since the metric functions are non-linearly coupled al-
ready at the leading order. Instead, we assume that
the EGB rotating black holes have the same property
as GR rotating black holes, i.e., the large D limit of the
Myers-Perry metric reduces to that of the boosted black
brane [19, 20]. For instance, in the Einstein-Maxwell the-
ory, the same strategy has been successful in construct-
ing charged rotating black holes in the large D limit both
with a single angular momentum [21] and equal angular
momenta [22].

We thus start from the following metric ansatz of
equally rotating black holes in D = 2n + 3 dimensions
with the Eddington-Finkelstein gauge

ds2 = −A(r)(e(0))2 + 2U(r)e(0)e(1) + 2C(r)e(0)e(2)

+H(r)(e(2))2 + r2dΣ2, (5)

where dΣ2 is the Fubini-Study metric on CPn and other
tetrad bases are defined by

e(0) =
dt− Ωr(dφ+A)√

1− Ω2
, e(2) =

r(dφ+A)− Ωdt√
1− Ω2

,

e(1) = dr, (6)

with the dimensionless spin parameter Ω which produces
the local Lorentz boost in the subspace (dt, r(dφ + A)).
Here A is the Kähler potential of CPn. In what follows,
we use 1/n as the expansion parameter rather than 1/D
itself, since the large D owes to the large dimension of
CPn. We impose that the metric reduces to that of the
boosted black brane at n → ∞ 1

C = O(n−1), H = 1 +O(n−1). (7)

As the asymptotic boundary condition, we impose

A → 1, U → 1, C → 0, H → 1 (8)

at r → ∞, so that the ansatz (5) is asymptotically flat.
To resolve the thin near-horizon region at the large n

1 The assumption C = O(n−1) alone gives H,U = const+O(n−1)
in GR. However, we could not decouple the leading order equa-
tion only with the assumption for C in the EGB theory.

limit, we introduce the following often-used radial coor-
dinate

R := r2n. (9)

Here we set the horizon scale r0 = 1 using the scaling
degree of freedom. The metric components are expanded
by 1/n as a function of R

A =
∞∑

i=0

1

ni
Ai(R), U =

∞∑

i=0

1

ni
Ui(R),

C =
∞∑

i=0

1

ni
Ci(R), H =

∞∑

i=0

1

ni
Hi(R). (10)

To keep the Einstein-Hilbert and GB terms comparable
at the large n limit in eq. (3), we introduce the rescaled
GB coupling parameter which remains finite at n → ∞,

α := (2n)2αGB. (11)

With the assumption (7), we can decouple the leading
order equation, which yields

A0 = 1 +
1

2α
− 1

2α

√
1 +

4α(α+ 1)m

R
,

U0 = 1, C0 = 0, H0 = 1, (12)

where the integration constant m introduces the horizon
at R = m. As one can see in the form of A0, the lead-
ing order metric, therefore, reduces to the boosted black
string metric at large D as in GR [17]. Note that, for the
existence of the horizon, we only consider the parameter
region α > −1/2.

To obtain the information for D < ∞, we need to solve
the 1/n correction to the above leading order metric. In
the higher order analysis, Ai and Ci get extra integration
constants, which are not determined by the boundary
condition. They actually correspond to the parameter
shift in the mass parameter m and horizon velocity ΩH

in each order of n−i. Here ΩH is determined so that
k = ∂t+ΩH∂φ becomes the null generator of the horizon.
To fix the above integration constants, we simply set

Ai(R = m) = 0, Ci(R = m) = 0. (13)

This sets the horizon at R = m and angular velocity as

ΩH = Ωm− 1
2n (14)

in all order of 1/n. In the original coordinate, the horizon
radius is given by

rH := m
1
2n . (15)

For the other metric functions, we simply impose the reg-
ularity at R = m and asymptotic boundary condition. In
the derivation, it is convenient to introduce an auxiliary
variable [18]

X :=

√
1 +

4α(α+ 1)m

R
, (16)

3

which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.

Having these in mind, the next-to-leading order solu-
tion is determined as

C1 =
Ω(X − 1)

4α(1− Ω2)
log

(
4α(1 + α)

X2 − 1

)
, (17)

U1 =
(X − 1)Ω2(α(X − 1)− 1)

2(α+ 1)(2α+ 1) (X2 + 1) (Ω2 − 1)
, (18)

H1 =
Ω2

(α+ 1)(1− Ω2)

[
log

(
X + 1

2

)
− arctanX

+
π

4
− 1

2(2α+ 1)
log

(
X2 + 1

2

)]
, (19)

and

A1 =

(
X2 − 1

)
Ω2 log

(
X2 + 1

)

16α (2α2 + 3α+ 1)X (Ω2 − 1)
+

(
X2 − 1

)
Ω2(arctanX − arctan(1 + 2α))

8α(α+ 1)X (Ω2 − 1)
−

(X − 1)
(
X + 2Ω2 − 1

)
log(X − 1)

4αX (Ω2 − 1)

−
(X − 1) log(X + 1)

(
α
(
4Ω2 − 2

)
+X

(
2α+ Ω2 + 2

)
+ 5Ω2 − 2

)

8α(α+ 1)X (Ω2 − 1)
+ a0 + a1X +

a2
X

, (20)

where the coefficients a0, a1, a2 are given by

a0 =
log(4mα(α+ 1))

2α
+

1

4α(1− Ω2)
, (21)

a1 =
2(α+ 1) log(4α(1 + α)) + 2 logm+ 1

8α(1 + α)(Ω2 − 1)

+ Ω2 2(1 + 2α) log(2(1 + α)/m2)− log(1 + (1 + 2α)2)

16α(1 + α)(1 + 2α)(Ω2 − 1)
,

(22)

a2 =
(1 + 2α)(1 + 2 logm)

8α(1 + α)(Ω2 − 1)
+

log(4α(1 + α))

4α(Ω2 − 1)

− Ω2(4(α+ 1) log(2α) + (4α+ 5) log(2(α+ 1)))

8α(α+ 1)(Ω2 − 1)

+
Ω2(log(1 + (1 + 2α)2)− 4(2α+ 1)2 logm)

16α(1 + α)(1 + 2α)(Ω2 − 1)
. (23)

One can easily check that the GR limit α → 0 reproduces
the equally rotating Myers-Perry solutions up to NLO in
the corresponding gauge. The large α limit gives another
simplification

A → 1−
√

m

R

(
1 +

m log(R/m)

2nR(1− Ω2)

)
, (24)

C →
√

m

R

Ω log(R/m)

2n(1− Ω2)
, (25)

and

U → 1 +O(n−2), H → 1 +O(n−2). (26)

which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]

S =
1

4G

∫

H
(1 + 2αGBR)

√
h dD−2x, (29)

where h and R is the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
ADM mass and angular momentum, temperature and
entropy are given by

3

which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.

Having these in mind, the next-to-leading order solu-
tion is determined as
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Ω2(log(1 + (1 + 2α)2)− 4(2α+ 1)2 logm)
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One can easily check that the GR limit α → 0 reproduces
the equally rotating Myers-Perry solutions up to NLO in
the corresponding gauge. The large α limit gives another
simplification
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)
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and

U → 1 +O(n−2), H → 1 +O(n−2). (26)

which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]

S =
1

4G

∫

H
(1 + 2αGBR)

√
h dD−2x, (29)

where h and R is the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
ADM mass and angular momentum, temperature and
entropy are given by

3

which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.

Having these in mind, the next-to-leading order solu-
tion is determined as

C1 =
Ω(X − 1)

4α(1− Ω2)
log

(
4α(1 + α)

X2 − 1

)
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which is solved as
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obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]
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+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.
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obtained as in GR, except the entropy defined by the
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which takes X = 1 at R = ∞ and X = 1 + 2α on the
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and

U → 1 +O(n−2), H → 1 +O(n−2). (26)

which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]
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where h and R is the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
ADM mass and angular momentum, temperature and
entropy are given by
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Next-to-Leading order sols：A1, C1, H1, U1

Higher order corrections are obtained by solving the sourced ODEs w.r.t R

NNLO is also obtained ( much more complicated to show)
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which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.

Having these in mind, the next-to-leading order solu-
tion is determined as
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and
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which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]
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horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
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entropy are given by
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which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.
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and

U → 1 +O(n−2), H → 1 +O(n−2). (26)

which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]
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(1 + 2αGBR)

√
h dD−2x, (29)

where h and R is the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
ADM mass and angular momentum, temperature and
entropy are given by

Ergo radius is obtained by

Using the leading order solution
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which takes X = 1 at R = ∞ and X = 1 + 2α on the
horizon.

Having these in mind, the next-to-leading order solu-
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One can easily check that the GR limit α → 0 reproduces
the equally rotating Myers-Perry solutions up to NLO in
the corresponding gauge. The large α limit gives another
simplification
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and

U → 1 +O(n−2), H → 1 +O(n−2). (26)

which could imply the existence of the analytic form in
the pure GB theory.
The ergosurface of the leading order metric (12) is

given by the same condition as in GR

0 = gtt = (1− Ω2)−1(−A− 2ΩC + Ω2H), (27)

which is solved as

Rergo =
(1 + α)m

(1− Ω2)(1 + α(1− Ω2))
+O(n−1). (28)

This is a monotonically increasing function of α, and
hence the ergoregion is extended by the GB correction.
For α → ∞, Rergo approaches to a finite value.

In the EGB theory, the thermodynamic variables are
obtained as in GR, except the entropy defined by the
Iyer-Wald formula [23, 24]
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where h and R is the spacial metric and curvature of the
horizon cross section, respectively. Note that the angular
velocity is already given in eq. (14). Up to NLO, the
ADM mass and angular momentum, temperature and
entropy are given by

Entropy ← Iyer-Wald formula

4
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where the GB coupling is written in the scale invariant
form αH := α/r2H = α/m

1
n . The first law dM = TdS +

ΩHdJ is easily checked by differentiating with m and Ω
up to NLO with α fixed.

From eq. (32), one can expect the extremal limit would
exist approximately at

Ω = 1− 2 + 5α+ 4α2

4n(1 + 2α)(1 + α)
. (34)

Unfortunately, we will see that T includes (1− Ω2)−2 in
NNLO [28], which invalidates the 1/n-expansion around
the extremal limit. This fact should not be so remark-
able, since as pointed out already in the Einstein grav-
ity [20, 26], the large D limit is incompatible to the ex-
tremal limit, so that we need a some remedy to elimi-
nate the apparent breaks down of the 1/n expansion near
the extremal limit, as actually performed for charged
squashed black holes [25]. Finding the analytic solu-
tion of equally rotating black holes in the pure GB the-
ory could shed some light on the extremal limit in the
EGB theory. Interestingly, the extremal limit of the
equally-rotating black holes was examined for small α
in D = 5 [27], where the inner horizon only appears close
to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by

s =

√
1− j2 (2αH + 1)

αH + 1

×
[
1 +

1

2n(1− j2)

(
log

(
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(
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, (35)

where the angular momentum and entropy are normal-

0.2 0.4 0.6 0.8 j

0.5

1.0

1.5

s

Myers-Perry

αH=1

αH=0

αH=-0.25

FIG. 1: The phase diagram in the space of the entropy and
angular momentum normalized by the mass for n = 4 (D =
11). The thick and dashed curves represents the NLO and
LO results respectively. The exact Myers-Perry solutions for
n = 4 are also plotted by the gray curve.

ized by the mass scale

j :=
8πGJ

(n+ 1)Ω2n+1

(
8πGM

(n+ 1/2)Ω2n+1

)− 2n+1
2n

, (36)

s :=
4GS

(n+ 1)Ω2n+1

(
8πGM

(n+ 1/2)Ω2n+1

)− 2n+1
2n

. (37)

Here the spin parameter is expressed as the function of j

Ω = j − j

2n

[
log

(
1− j2

1 + αH

)
− 2αHj2

(1 + αH)(1 + 2αH)

]
.

(38)

In fig. 1, the phase diagram shows that the positive (neg-
ative) value of α gives larger (smaller) entropy than GR
solutions for each j , succeeding the property of the static
solutions. Near the extremality the convergence of 1/n
expansion becomes bad.

In this work, using the large D approach, we have ob-
tained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger α, the size of the ergoregion becomes larger, and

1/n-expansion up to O(1/n)

Metric is solved up to NLO in 1/n-expansion 
→ Thermodynamic variables are obtained up to the same order

scalar curvature of horizon surface

αH := α/m 1
2n

The 1st law is checked up to NLO
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where the GB coupling is written in the scale invariant
form αH := α/r2H = α/m

1
n . The first law dM = TdS +

ΩHdJ is easily checked by differentiating with m and Ω
up to NLO with α fixed.

From eq. (32), one can expect the extremal limit would
exist approximately at

Ω = 1− 2 + 5α+ 4α2

4n(1 + 2α)(1 + α)
. (34)

Unfortunately, we will see that T includes (1− Ω2)−2 in
NNLO [28], which invalidates the 1/n-expansion around
the extremal limit. This fact should not be so remark-
able, since as pointed out already in the Einstein grav-
ity [20, 26], the large D limit is incompatible to the ex-
tremal limit, so that we need a some remedy to elimi-
nate the apparent breaks down of the 1/n expansion near
the extremal limit, as actually performed for charged
squashed black holes [25]. Finding the analytic solu-
tion of equally rotating black holes in the pure GB the-
ory could shed some light on the extremal limit in the
EGB theory. Interestingly, the extremal limit of the
equally-rotating black holes was examined for small α
in D = 5 [27], where the inner horizon only appears close
to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by

s =

√
1− j2 (2αH + 1)

αH + 1

×
[
1 +

1

2n(1− j2)

(
log
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(
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)]
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where the angular momentum and entropy are normal-
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ized by the mass scale

j :=
8πGJ

(n+ 1)Ω2n+1

(
8πGM

(n+ 1/2)Ω2n+1

)− 2n+1
2n

, (36)

s :=
4GS

(n+ 1)Ω2n+1

(
8πGM
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)− 2n+1
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. (37)

Here the spin parameter is expressed as the function of j

Ω = j − j
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[
log
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− 2αHj2

(1 + αH)(1 + 2αH)

]
.

(38)

In fig. 1, the phase diagram shows that the positive (neg-
ative) value of α gives larger (smaller) entropy than GR
solutions for each j , succeeding the property of the static
solutions. Near the extremality the convergence of 1/n
expansion becomes bad.

In this work, using the large D approach, we have ob-
tained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger α, the size of the ergoregion becomes larger, and
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where the GB coupling is written in the scale invariant
form αH := α/r2H = α/m

1
n . The first law dM = TdS +

ΩHdJ is easily checked by differentiating with m and Ω
up to NLO with α fixed.

From eq. (32), one can expect the extremal limit would
exist approximately at

Ω = 1− 2 + 5α+ 4α2

4n(1 + 2α)(1 + α)
. (34)

Unfortunately, we will see that T includes (1− Ω2)−2 in
NNLO [28], which invalidates the 1/n-expansion around
the extremal limit. This fact should not be so remark-
able, since as pointed out already in the Einstein grav-
ity [20, 26], the large D limit is incompatible to the ex-
tremal limit, so that we need a some remedy to elimi-
nate the apparent breaks down of the 1/n expansion near
the extremal limit, as actually performed for charged
squashed black holes [25]. Finding the analytic solu-
tion of equally rotating black holes in the pure GB the-
ory could shed some light on the extremal limit in the
EGB theory. Interestingly, the extremal limit of the
equally-rotating black holes was examined for small α
in D = 5 [27], where the inner horizon only appears close
to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by

s =

√
1− j2 (2αH + 1)

αH + 1

×
[
1 +

1

2n(1− j2)
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log
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+
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(
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)]
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where the angular momentum and entropy are normal-
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angular momentum normalized by the mass for n = 4 (D =
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ized by the mass scale

j :=
8πGJ

(n+ 1)Ω2n+1

(
8πGM

(n+ 1/2)Ω2n+1

)− 2n+1
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, (36)

s :=
4GS
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)− 2n+1
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. (37)

Here the spin parameter is expressed as the function of j

Ω = j − j
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(38)

In fig. 1, the phase diagram shows that the positive (neg-
ative) value of α gives larger (smaller) entropy than GR
solutions for each j , succeeding the property of the static
solutions. Near the extremality the convergence of 1/n
expansion becomes bad.

In this work, using the large D approach, we have ob-
tained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger α, the size of the ergoregion becomes larger, and
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where the GB coupling is written in the scale invariant
form αH := α/r2H = α/m

1
n . The first law dM = TdS +

ΩHdJ is easily checked by differentiating with m and Ω
up to NLO with α fixed.

From eq. (32), one can expect the extremal limit would
exist approximately at

Ω = 1− 2 + 5α+ 4α2

4n(1 + 2α)(1 + α)
. (34)

Unfortunately, we will see that T includes (1− Ω2)−2 in
NNLO [28], which invalidates the 1/n-expansion around
the extremal limit. This fact should not be so remark-
able, since as pointed out already in the Einstein grav-
ity [20, 26], the large D limit is incompatible to the ex-
tremal limit, so that we need a some remedy to elimi-
nate the apparent breaks down of the 1/n expansion near
the extremal limit, as actually performed for charged
squashed black holes [25]. Finding the analytic solu-
tion of equally rotating black holes in the pure GB the-
ory could shed some light on the extremal limit in the
EGB theory. Interestingly, the extremal limit of the
equally-rotating black holes was examined for small α
in D = 5 [27], where the inner horizon only appears close
to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by

s =
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where the angular momentum and entropy are normal-
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FIG. 1: The phase diagram in the space of the entropy and
angular momentum normalized by the mass for n = 4 (D =
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LO results respectively. The exact Myers-Perry solutions for
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Here the spin parameter is expressed as the function of j

Ω = j − j
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In fig. 1, the phase diagram shows that the positive (neg-
ative) value of α gives larger (smaller) entropy than GR
solutions for each j , succeeding the property of the static
solutions. Near the extremality the convergence of 1/n
expansion becomes bad.

In this work, using the large D approach, we have ob-
tained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger α, the size of the ergoregion becomes larger, and
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where the GB coupling is written in the scale invariant
form αH := α/r2H = α/m

1
n . The first law dM = TdS +

ΩHdJ is easily checked by differentiating with m and Ω
up to NLO with α fixed.

From eq. (32), one can expect the extremal limit would
exist approximately at

Ω = 1− 2 + 5α+ 4α2

4n(1 + 2α)(1 + α)
. (34)

Unfortunately, we will see that T includes (1− Ω2)−2 in
NNLO [28], which invalidates the 1/n-expansion around
the extremal limit. This fact should not be so remark-
able, since as pointed out already in the Einstein grav-
ity [20, 26], the large D limit is incompatible to the ex-
tremal limit, so that we need a some remedy to elimi-
nate the apparent breaks down of the 1/n expansion near
the extremal limit, as actually performed for charged
squashed black holes [25]. Finding the analytic solu-
tion of equally rotating black holes in the pure GB the-
ory could shed some light on the extremal limit in the
EGB theory. Interestingly, the extremal limit of the
equally-rotating black holes was examined for small α
in D = 5 [27], where the inner horizon only appears close
to the extremality.

Below, we present the phase diagram in the terms of
dimensionless variables related by
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where the angular momentum and entropy are normal-
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Here the spin parameter is expressed as the function of j
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In fig. 1, the phase diagram shows that the positive (neg-
ative) value of α gives larger (smaller) entropy than GR
solutions for each j , succeeding the property of the static
solutions. Near the extremality the convergence of 1/n
expansion becomes bad.

In this work, using the large D approach, we have ob-
tained the first analytic solutions of not-slowly rotating
black holes to the EGB theory in odd dimensions. For
larger α, the size of the ergoregion becomes larger, and

• 1/n expansion is bad around extremal limit 
( the same is true in GR) 

• For any j, Entropy  Increase for α>0 
                               Decrease for α<0 

Thick：O(1)+O(1/n)
Dotted：O(1)

n = 4 (D = 11)

α < 0

α > 0



EGB-Black String at Large D



Overview : EGB-BS@Large D

• In                              , EGB black string is solved at leading order in 1/D 
However, LO results are much similar to GR 
- Threshold of Instability :   
- Entropy is proportional to the mass@LO 
                      → 　cf)  

• 2nd law was proven in Higher curvature theory around stationary BHs 
with Iyer-Wald(-Wall) formula 
 
 
 
 

kGL = 1 + O(1/D)

∂tS = O(1/D) SSch ∝ M
D − 2
D − 3
Sch ∼ MSch(1 + O(1/D))

Chen-Li-Zhang (2017)

Iyer-Wald (1993,1994)S = ∫ h(1 + 2αGBRH)dA

Wall (2015), Hollands-Kovács-Reall (2022)

How about with more nonlinear evolution ? (@large D)

This motivate us to study NLO correction to EGB-BS



Ansatz

A = ∑
i=0

Ai(t, 𝖱, z)
ni

, C = ∑
i=0

Ci(t, 𝖱, z)
ni

G = 1 +
1
n ∑

i=0

Gi(t, 𝖱, z)
ni

, U = 1 +
1
n ∑

i=0

Ui(t, 𝖱, z)
ni

ds2 = − Adt2 + 2Udtdr −
1
n

Cdtdz +
1
n

Gdz2 + r2dΩ2
n+1

Ansatz for  dynamical black string D = n + 4

1/n expansion with 𝖱 := (r/r0)n

Eμν := Rμν + αGBH̃μν = 0 α := n2αGB/r2
0

EGB equation



Leading order analysis

EΩ/n = 𝖱(2αA0 − 2α − 1)∂𝖱A0 + (A0 − 1)(αA0 − α − 1) + 𝒪(1/n)

-partSn+1

ODE for (R)A0

A0 = 1 +
1

2α
−

1
2α

1 +
4α(α + 1)m(t, z)

𝖱

C0 =
p(t, z)

2αm(t, z) ( 1 +
4α(α + 1)m(t, z)

𝖱
− 1),

, ：arbitrary funcsm(t, z) p(t, z)

C0

Eij = EΩγij (Eμν := Rμν + αGBH̃μν)



Leading order sols

G0 = (
log (X2 + 1)

2α + 1
− 2 log(X + 1) + 2 arctan X) (

m∂z p − p∂zm + m2

(α + 1)m2 )
−

((2α + 1)π − 2(4α + 1)log 2)(m∂z p − p∂zm + m2)
2(α + 1)(2α + 1)m2

+
p2

2αm2
(X − 1)

U0 =
p ((2α2 + 3α + 1) p − 4α2∂zm) + 4α2m∂z p + 4α2m2

4α(α + 1)(2α + 1)m2

−
((2α + 1)X∂zm − 1)(−∂zmp + m∂z p + m2)

(α + 1)(2α + 1)(X2 + 1) m2
−

Xp2

4αm2
.

A0 =
1 + 2α − X

2α
, C0 =

p
2αm

(X − 1) .X := 1 +
4α(α + 1)m

𝖱

An auxiliary variable to simplify the expression

We also have G0, U0

Chen-Li-Zhang (2017)

X：1 = X(𝖱 = ∞) ≤ X ≤ X(𝖱 = 𝟣) = 1 + 2α



Higher order corrections

∂X ( X
1 − X2

Ai) = 𝒮(i)
A

∂2
XCi = 𝒮(i)

C

∂X[(1 + X−2)(1 + 2α − X)∂XGi] = 𝒮(i)
G

∂X (Ui −
1 − X2

4X
∂XGi) = 𝒮(i)

U

Higher order corrections  are derived by ODEs + sourcesAi, Ci, Gi, Ui

Consider R-integration in higher order  ( put aside the constraints)

X := 1 +
4α(α + 1)m

𝖱



A1

A1 =
(X2 − 1)(−p∂zm + m∂z p + m2)

4α(α + 1)Xm2 ( log(X2 + 1)
2(2α + 1)

+ arctan X)
+

(X − 1)log(X + 1)((X + 1)p∂zm + α(X + 1)m∂z p + (−2α + 2αX + X − 3)m2)
4α(α + 1)Xm2

+
(X − 1)log(X − 1)(2(X − 1)m + (X + 1)∂z p)

4αXm

+
(X − 1)(p2 − 2p∂zm + 2m∂z p + m2(2 log(4α(α + 1)m) + 1))

2αXm2

+
(1 − X2)(2(2α + 1)(2m2 log m + p2) + c1m2 + c2p∂zm + c3m∂z p)

8Xα(1 + α)(2α + 1)m2

:constantsc1, c2, c3



G1

G1 =

 are also integrable but more lengthy form…C1, U1, H1



Effective equation up to NLO is obtained 
            (LO part is already obtained in         　　            )

Effective equation

∂tm − ∂2
zm = − ∂zp + O(1/n)

∂t p − ∂2
z p = ∂z (m −

p2

m
+

2α
(α + 1)(2α + 1) (

p∂zm − m∂zp − m2

m ))

Chen-Li-Zhang (2017)

+O(1/n)

From constraint eqs



2nd law

S1 =
1 + α + 2α2

1 + α ∫
L

0 (−
(∂zm)2

2m
−

(2α + 1)(1 + α)
2(1 + α + 2α2)

mv2 + m log m) dz .

∂tS1 =
2(1 + α + 2α2)

1 + α ∫
L

0
m(∂zv)2dz ≥ 0

From Iyer-Wald formula S = CM +
1
n

S1

2nd law holds

Horizon velocity: vi(t, x) := (pi − ∂im)/m

LO effective theory



Gregory-Laflamme instability

ΩLO = −
1 + 2α + 2α2

(2α + 1)(α + 1)
k2 ±

k 4α4 + 8α3 + 4α + α2 (k2 + 7) + 1

(2α + 1)(α + 1)
,

m(t, z) = 1 + ε m1(Ω, k)eΩt cos(kz), p(t, z) = ε p1(Ω, k)eΩt sin(kz),

Perturbation of uniform sols

Ω = ΩLO(k) +
1
n

ΩNLO(k)

Dispersion at LO

Chen-Li-Zhang 17

ΩLO(kGL) = 0 kGL = 1

threshold is same as GR at LO



Dispersion@NLO

ΩNLO = −
2α (2α2 + 2α + 1) k4 arctan(2α + 1)

(α + 1)3(2α + 1)2
−

α (2α2 + 2α + 1) k4 log(2α2 + 2α + 1)
(α + 1)3(2α + 1)3

−
2α (2α2 + 2α + 1) k4 log(1 + α)

(α + 1)3(2α + 1)
− (40α6 + 104α5 + 112α4 + 60α3 + 20α2 + 6α + 1) k2

(α + 1)2(2α + 1)2(2α2 + 2α + 1)

+
α(8α + π + 4)(2α2 + 2α + 1) k4

2(α + 1)3(2α + 1)2
± k 4α4 + 8α3 + 7α2 + 4α + α2k2 + 1

4(α + 1)3(2α + 1)3

×
4 (4α3 + 6α2 + 4α + 1) k3 arctan(2α + 1)(4α4 + 16α3 + 8α + α2 (19 − 2k2) + 1)

4α4 + 8α3 + 4α + α2 (k2 + 7) + 1

−
4(2α + 1)2k3 log(α + 1)(−8α5 + 2α + 4α4 (k2 − 5) + 2α3 (2k2 − 9) + α2 (2k2 − 5) + 1)

4α4 + 8α3 + 4α + α2 (k2 + 7) + 1

+
2 (2α2 + 2α + 1) k3 log(2α2 + 2α + 1)(4α4 + 16α3 + 8α + α2 (19 − 2k2) + 1)

4α4 + 8α3 + 4α + α2 (k2 + 7) + 1

+
(2α + 1)k

4α4 + 8α3 + 4α + α2 (k2 + 7) + 1 (2(α + 1)2(8α5 − 28α4 − 46α3 − 19α2 − 4α − 1)

+2α2(8α + π + 4)(2α2 + 2α + 1) k4 − (α + 1)(π (8α5 + 32α4 + 42α3 + 28α2 + 9α + 1)

−4 (16α6 + 24α5 + 12α4 − 9α3 − 8α2 + α + 1)) k2)] .

Ω = ΩLO +
1
n

ΩNLO



Correction to kGL

k1 =
20α3 + 2πα2 + 34α2 + 2πα + 12α + π + 2

4(α + 1)(2α2 + α + 1)
+

2 log(α + 1)
2(α + 1)(2α2 + α + 1)

− (2α2 + 2α + 1) arctan(2α + 1)

(α + 1)(2α2 + α + 1)
− (2α2 + 2α + 1) log(2α2 + 2α + 1)

2(α + 1)(2α + 1)(2α2 + α + 1)

 →    or   Ω(kGL) = 0 kGL = 1 −
k1

n
LGL = 2π (1 +

k1

n )

1 2 3 4 5 α
0.5

1.0

1.5

2.0

2.5
k1

α: Large,  → small ( → Large )kGL LGL

→Uniform phase is stabilized

 depends on α from NLOkGL



Weakly Non-Uniform BS

m(z) = exp (∑
i=0

λiμi cos ( 2πiz
L )), p(z) = …

From 0-mode at , static NUBS appears 
NUBS can be obtained by perturbative expansion

k = kGL
λ :=

1
2 ((rmax/rmin)n − 1)
Non-uniformity 
parameter

μi = ∑
j=0,k=0

μi, j,kλjn−k

M
MGL

= 1 +
λ2

24 (1 −
ℓ1 − 12

n ) + 𝒪(λ3)

S
SGL

= 1 +
λ2

24 (1 −
ℓ1 − 12

n ) + 𝒪(λ3)

𝒯
𝒯GL

= 1 − (1 +
9 − ℓ1

n ) λ2

2
+ 𝒪(λ3)

Thermodynamics are obtained in expansion in 1/n and λ

ℓ1 :=
48α3 + 76α2 + (40 + π)α + 16

2(α + 1)(2α2 + α + 1)

−
α (log (2α2 + 2α + 1) + 2(2α + 1)2log(α + 1) + 2(2α + 1)arctan(2α + 1))

(α + 1)(2α + 1)(2α2 + α + 1)

MGL(α), SGL(α), 𝒯GL(α) : Uniform values at GL point



Critical Dimensioin

n*,D

n*,M

0 1 2 3 4 5α8

10

12

14

16
n*

M
Ln+1

≃
MGL

Ln+1
GL [1 +

nλ2

24 (1 −
n*,M

n )] Ω = −
2α2 + α + 1
2α2 + 2α + 1 (1 −

n*,D

n ) λ2

12

Critical Dimension in GR  
NUBS is unstable for  and stable for 

13 < D* < 14

D < D* D > D* Sorkin (2004)

Thermodynamic Critical D Dynamics Critical D

Increasing functions of α 
→ stable NUBS exists in more large D

 depends onαin EGBD* = n* + 4

Note :  = O(1) up to NLOD*,error

n = n*(1 + O(1/n*)) = n* + O(1)

= 0 = 0



Summary

• Can large D also allows to solve BHs analytically 
                     in Lovelock theory or more generic higher curvature theory ?

Summary
• Many exact sols of BHs are missing in EGB theory 

                                                             ( also in Higher curvature theories) 

• The difficulty can be circumvented by the large D limit  
                                                                        ( at the cost of 1/D expansion) 

• Black strings, Rotating BHs are solved in 1/D expansion

Future Work



Appendix



Holographic evaporation

Figure 10. A black droplet on the brane is connected to a larger and colder black hole in the bulk.
The initial system is far from equilibrium and the droplet is quickly absorbed by the central black
hole (which then wobbles around the AdS center). Here we have set r0 = 0.4. Compare to Fig. 4.

Similar considerations apply as before concerning the e↵ects of finite N and small

inter-brane distances.

4.3 Black hole evaporating into a colder bath

The previous cases started with configurations that were slight perturbations of unstable

equilibrium states. In the next example (cf. Figs. 4 and 10), we are still in the regime of

small AdS black holes, but the initial states are not close to equilibrium. Instead, we set

up a single-brane configuration with two blobs, a smaller one localized near the brane, and

a bigger one in the bulk, with a funnel joining them. For the initial blobs, we can simply

take the solutions for a droplet on the brane and a Gaussian centered at x = 0; if the tails

of their profiles reach each other appreciably, this is enough for a funnel-like connection

between them.

Even though separately each initial blob may be a static solution of the equations,

when combined, they will not remain static. We expect that the smaller (hotter) blob

on the brane flows to the larger (colder) blob in the bulk, and this is indeed what the

numerical evolution of the equations shows, see Fig. 10.

In dual terms, the black hole on the brane evaporates into a colder bath. This bath

is a large non-gravitational system, namely the CFT at the asymptotic AdS boundary9,

and the bulk black hole sets it at a finite temperature that we take to be lower than the

brane black hole. The overlap between bulk blobs provides the channel for classical flow

of horizon generators (dual to heat) between them.

4.4 Quick collapse followed by slow evaporation into an empty bath

Now we consider large AdS black holes, i.e., solutions of the e↵ective equations with r0 > 1

which are thermodynamically stable. The (approximately) Gaussian profiles of the corre-

sponding blobs are now broader. We have not found conclusive evidence of the existence of

static droplets in this range, at least not for branes with moderate values of x0. Regardless

of this, we can always set up initial conditions for a blob localized on the brane, which does

not settle into a static droplet and which then evolves by sliding o↵ into the bulk. That is,

we set up initial conditions for a non-equilibrium configuration of black hole on the brane

9
The evolution would be essentially the same if there were a second brane at large negative x.
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r0 = 0.4

Figure 3. Two scenarios for funnel black hole evaporation, triggered by di↵erent perturbations.
Upper: Both brane black holes evaporate into the bulk. Lower: One brane black hole evaporating
into the other.

Figure 4. Small brane black hole connected to a large, colder black bath which induces black hole
evaporation.

Let us add that the dynamics of small AdS black holes can be quite richer than

indicated above. It involves the presence of thin black funnels in the bulk, which are string-

like horizons that can be unstable with a tendency to pinch. If the horizon pinches o↵ to

zero size, then the connection between the brane black hole and the bath will be broken

and further evaporation will be hindered. Thus, the evolution of the system depends

on the competition between the rate of energy flow along the funnel—which drives the

evaporation—and the rate at which the funnel pinches—which leads to a burst signal that,

when it reaches the boundary, indicates the severing of the evaporation channel [24]. This

is another instance of a fascinating phenomenon from the boundary perspective, which

does not have any known analogue in free or weakly coupled field theory.

Finally, braneworld holography has been revisited in recent times in order to derive the

Page curve [34] followed by the entanglement entropy of the radiation emitted by a black

– 6 –
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NLO equation
C Quasi-local stress energy tensor

Here we present the quasi-local stress energy tensor of the EGB black string defined by
Brown-York’s method

Tµ⌫ := lim
r!1

r
n+1

8⇡G
(Kh

µ⌫ �K
µ⌫)� (regulator), (C.1)

where hµ⌫ and Kµ⌫ is the metric and extrinsic curvature of a r-constant surface. At large
D, we normalize the tensor so that it remains finite at the limit

Tµ⌫ =
n

16⇡G
T

µ⌫ (C.2)

where the normalized components up to NLO are given by

T
tt = (↵ + 1)m

+
1

n


�m� ↵p
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m
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� =
log (2↵2 + 2↵ + 1)
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Thermodynamics of NUBS

M
MGL

= 1 +
λ2

24 (1 −
ℓ1 − 12

n ) −
λ3

12 (1 −
ℓ1 − 12

n ) + λ4 ( 5448 − 443ℓ1

3456n
+

971
6912 ) + 𝒪(λ5)

S
SGL

= 1 +
λ2

24 (1 −
ℓ1 − 12

n ) −
λ3

12 (1 −
ℓ1 − 12

n ) + λ4 ( 5448 − 443ℓ1

3456n
+

971
6912 ) + 𝒪(λ5)

𝒯
𝒯GL

= 1 − (1 +
9 − ℓ1

n ) λ2

2
+ (1 +

9 − ℓ1

n ) λ3 − ( 121
72

+
55(9 − ℓ1)

36n ) λ4 + 𝒪(λ5)

MGL = (1 + α)rn+1
0 (1 +

(α + 1)ℓ1 − 7α − 5
2n(1 + α) ), SGL = (1 + 2α)rn+2

0 (1 +
(2α + 1)ℓ1 − 10α − 7

2n(1 + 2α) )
𝒯GL =

rn
0

n
1 + α + 2α2

1 + 2α
1 +

1
n (

α (4α2 − 8α − 3)
(1 + 2α)(1 + α + 2α2)

+
arctan(1 + 2α) − π /4 − log(1 + α)

1 + α
+

log (1 + 2α + 2α2)
2(2α + 1)(α + 1) )

TH = TH,GL =
1
r0 ( 1 + α

1 + 2α
−

α(1 + 4α)
n(1 + 2α)2 ) .

Expand in nonuniformity λ

← tension



Comparison with Large α limit

τ :=
L𝒯
M

= τGL [1 − (1 −
ℓ1 − 10

n ) λ2

2
+ (1 −

ℓ1 − 10
n ) λ3 − ( 481

288
+

2171 − 217ℓ1

144n ) λ4 + 𝒪(λ5)]

relative tension/binding energy

τGL =
LGL𝒯GL

MGL
=

1
n

2α2 + α + 1
(2α + 1)(α + 1)

−
1 + 6α + 15α2 + 8α3 − 4α4

n2(1 + α)2(1 + 2α)2

relative tension for UBS

n−1 − n−2 ≃
1

n + 1

n−1 + n−2 ≃
1

n − 1

→ GR
→ large α limit RS-Tomizawa 22

Large D and Large α are compatible

α → 0

α → ∞
τGL ⟶

τGL ⟶


