Hairy AdS black holes with Robin boundary conditions

Takaaki Ishii (Rikkyo University)

to appear

w/ Tomohiro Harada, Takuya Katagiri, Norihiro Tanahashi

24 Feb 2023, 6th Holography workshop @ Danang

This can be also considered as

Hairy AdS black holes with mixed boundary conditions

Takaaki Ishii (Rikkyo University)

to appear

w/ Tomohiro Harada, Takuya Katagiri, Norihiro Tanahashi

24 Feb 2023, 6th Holography workshop @ Danang

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Grand potential
- 5. Results

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Grand potential
- 5. Results

Setup

Holographic superconductivity: breaking of U(1) gauge symmetry by Higgs mechanism in AdS

[Hartnoll-Herzog-Horowitz]

<u>"Classic" action</u> $(8\pi G_N=1)$

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} \left(R - 2\Lambda \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\phi|^2 - m^2 |\phi|^2 \right)$$

- Scalar mass: $m^2 = -2$

<u>Ansatz</u>

$$ds^{2} = -(1+r^{2}) f(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{(1+r^{2}) f(r)} + r^{2}d\mathcal{M}_{2}^{2}$$
$$A = A_{t}(r)dt, \qquad \phi = \phi(r)$$

- Goal: find solutions with $\phi \neq 0$.

Popular assumptions

We often use **Poincare AdS** and **Dirichlet boundary** conditions.

- Poincare AdS: dual to flat space field theory $dM_2^2 = dx^2 + dy^2$

- Dirichlet:
$$\phi = \frac{\phi_1}{r} + \frac{\phi_2}{r^2} + \cdots$$
 with $\phi_1 = 0$ in AdS boundary (r→∞)

<u>Outcomes</u>

- $\phi \neq 0$ in low temperature, finite charge density
- Spontaneous symmetry breaking $\langle O_2 \rangle \sim \phi_2 \neq 0$
- Interpretation: superconductivity/superfluidity

This talk

Other boundary conditions are available.

<u>Often used</u>

- Asymptotically Poincare AdS
- **Dirichlet** b.c. for the scalar field φ

Options

- Poincare AdS (flat), global AdS (sphere), hyperbolic
- Dirichlet, Neumann, Robin (mixed b.c.)

Preceding work

Perturbations of global RNAdS by complex scalar with **Robin b.c.** were studied.

[Katagiri-Harada, 2006.10301]

- Quasinormal modes \rightarrow (superradiant) instability

This talk: Backreacted solutions.

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Grand potential
- 5. Results

Poincare or global AdS

Choices for AdS boundary topology: **Poincare AdS** (flat boundary) or **global AdS** (spherical boundary).

This talk: We consider asymptotically global AdS

Hawking-Page phase transition

In global AdS, first order phase transition is discussed between horizonless and BH geometries.

[Hawking-Page,Witten]

- The dominant phase is determined by free energies.
- E.g. Thermal AdS vs Schwarzschild AdS BH

Charged AdS BH

We write phase diagram in grand canonical ensemble. (µ: chemical potential)

This talk: We also include charged scalar with Robin boundary conditions.

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Grand potential
- 5. Results

Scalar boundary conditions

We have several options for the **asymptotic behavior** of the scalar ϕ in $r \rightarrow \infty$, if $-9/4 \le m^2 \le -5/4$.

[Witten]

- Asymptotic behavior:
$$\phi = \frac{\phi_1}{r} + \frac{\phi_2}{r^2} + \cdots$$

Boundary conditions

- Dirichlet $\phi_1=0$ ($\zeta=0$)
- Neumann $\phi_2=0$ ($\zeta=\pi/2$)

- This talk: Robin $\phi_1 \neq 0$, $\phi_2 \neq 0$

Hairy solutions ($\phi \neq 0$) in global AdS

Global AdS	µ=0	μ>0
Horizonless	Neutral boson star	Charged boson star
With BH horizon	Neutral hairy black hole	Charged Hairy black hole
		this work

- Parameters: (μ, T_H, ζ, q) (q: gauge coupling)

What are boson stars?

In global AdS, **nonzero-scalar horizonless solutions** can be constructed.

- Such solutions are called **boson stars**.

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Grand potential
- 5. Results

Holographic renormalization

To obtain the expression of free energy (grand potential), we do **holographic renormalization for Robin b.c.**

[e.g. Skenderis]

- This is a systematic way to obtain such quantities.

<u>3 steps to Robin b.c.</u>

- 1. Dirichlet: standard addition of counterterms
- 2. Neumann: Legendre transform from Dirichlet
- 3. Robin: modification of Neumann

Dirichlet theory

On-shell action diverges, and we make it finite by adding covariant counterterms.

[e.g. Skenderis]

Renormalized action

$$S_{\rm ren}^D = \lim_{{\rm cutoff} \to \infty} \left(S_{\rm bulk} + S_{\rm ct} \right)$$

Scalar source and expectation value

$$\Phi_D = \sqrt{2}\phi_1 = 0, \quad \langle O_2 \rangle = \sqrt{2}\phi_2$$

Variation of action

$$\delta S_{\rm ren}^D = \int \mathrm{d}^3 x \sqrt{-h} \left(\frac{1}{2} \langle T^{ij} \rangle \delta h_{ij} + \langle J^i \rangle \delta \Psi_i + \langle O_2 \rangle \delta \Phi_D \right)$$

Neumann theory

Legendre transform of Dirichlet theory by a finite boundary term is Neumann theory.

[Witten, Papadimitriou]

Legendre transform by finite boundary term

$$S_{\rm ren}^N = S_{\rm ren}^D + S_{\rm LT} \qquad S_{\rm LT} = -2 \int \mathrm{d}^3 x \sqrt{-h} \,\phi_1 \phi_2$$

Scalar source and expectation value

$$\Phi_N = -\sqrt{2}\phi_2 = 0, \quad \langle O_1 \rangle = \sqrt{2}\phi_1$$

Variation of action

$$\delta S_{\rm ren}^N = \int \mathrm{d}^3 x \sqrt{-h} \left(\frac{1}{2} \langle T^{ij} \rangle \delta h_{ij} + \langle J^i \rangle \delta \Psi_i + \langle O_1 \rangle \delta \Phi_N \right)$$

Double trace deformation

Robin boundary conditions appear as modification of Neumann theory by a double trace term.

[Witten, Papadimitriou]

Additional finite term for consistent variation

$$S_{\rm ren}^R = S_{\rm ren}^N + S_{\rm Dtr} = S_{\rm ren}^D + S_{\rm LT} + S_{\rm Dtr} \qquad S_{\rm Dtr} = \cot\zeta \int d^3x \sqrt{-h} \phi_1^2$$

Scalar source and expectation value

$$\Phi_R = -\sqrt{2} \left(\phi_2 - \phi_1 \cot \zeta \right) = 0, \quad \langle O_1 \rangle = \sqrt{2} \phi_1$$

Variation of action

$$\delta S_{\rm ren}^R = \int \mathrm{d}^3 x \sqrt{-h} \left(\frac{1}{2} \langle T^{ij} \rangle \delta h_{ij} + \langle J^i \rangle \delta \Psi_i + \langle O_1 \rangle \delta \Phi_R \right)$$

Grand potential

We evaluate the phase structure in **grand canonical ensemble** by comparing the grand potential.

Total energy (BH mass)

$$\mathcal{E}_R = \mathcal{E}_N + \mathcal{E}_{\rm Dtr} = \mathcal{E}_D + \mathcal{E}_{\rm LT} + \mathcal{E}_{\rm Dtr}$$
$$\mathcal{E} = \int d\Omega_2 \langle T_{tt} \rangle$$

Grand potential

 $\Omega_R = \Omega_N + \Omega_{\rm Dtr} = \Omega_D + \Omega_{\rm LT} + \Omega_{\rm Dtr}$ $\Omega = \mathcal{E} - T_{\rm H} \mathcal{S}_{\rm BH} - \mu \mathcal{Q}$

Contents

- 1. Introduction
- 2. Global AdS
- 3. Robin boundary conditions
- 4. Holographic renormalization
- 5. Results

5-1. Neutral case (µ=q=0)

	ф=0	ф≠0
No horizon	Thermal AdS	Robin boson star
With BH horizon	Schwarzschild AdS BH	Neutral hairy Robin BH

- We compare free energies of these 4 solutions and determine the phase diagram in the (ζ ,T_H)-plane.

Instability for forming scalar hair

The Robin boundary conditions make neutral scalar unstable to become nonzero in $\zeta/\pi > 0.67$.

- Figure: location of the onset of instability
- Hairy BH to the right of each curve.
 (Orange: small BH branch, Blue: large BH branch)

Neutral phase diagram

We compare free energies between 4 different solutions: scalar field $\phi=0$ or $\phi\neq0$ (Robin), and BH or horizonless

- Blue line: 2nd order, scalar hair
- Red: 1st order Hawking-Page
- Orange: 1st order Hawking-Page

5-2. Charged case (μ,Τ_H,ζ,q)≠0

	ф=0	ф≠0
No horizon	Thermal AdS	Charged Robin star
With BH horizon	RNAdS BH	Charged Hairy Robin BH

- We compare grand potentials of these 4 solutions and determine the phase diagram in the (μ ,T_H)-plane.

Charged phase diagrams (q=1)

Large ζ

- Blue line: 2nd order, scalar hair
- Red: 1st order Hawking-Page
- Orange: 1st order Hawking-Page

Small ζ at small coupling q

- When the gauge coupling is small as q=1, extremal BH can survive as thermodynamically dominant phase.

- But these structures are not observed if q is large (q> $\sqrt{2}$).

Extra: Microcanonical ensemble

For solutions at the same (E,Q), a **hairy BH has higher entropy** than a zero-scalar BH.

Summary

We constructed hairy BH in global AdS when we use **Robin boundary conditions.**

We studied the **phase diagram in the (\mu,T_H) plane** when (ζ ,q) is varied.

<u>Future direction</u> How much can we utilize Robin (mixed) boundary conditions?