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Introduction




Black holes physics

General Relativity

Thermodynamics

Quantum Physics




Realistic v.s. Ideal black holes

Reflective or periodic boundary condition




Black holes are relativistic objects "y
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Einstein equation




No hair theorem

« All black hole solutions are completely determined by three
observables: mass (M), charge (Q), and angular momentum (J).




Cosmic censorship conjecture
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Black holes are thermal objects
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Zeroth law of black holes thermodynamics

o Zeroth law: if two systems are each in thermal equilibrium with a third system,
they are in thermal equilibrium with each other (same temperature)




First law of black holes thermodynamics

« First law: the system’s internal energy changes as work, heat or particles
enter/leave the system, respecting the law of conservation of energy.
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First law of black holes thermodynamics

« First law: the system’s internal energy changes as work, heat or particles
enter/leave the system, respecting the law of conservation of energy.
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Second law of black holes thermodynamics

« Second law: the entropy always increases in an irreversible process




Third law of black holes thermodynamics

o Third law: the system can not reach absolute zero at finite steps. (the entropy
approaches a constant, most likely zero, as temperature goes to zero)
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Third law of black holes thermodynamics

o Third law: the system can not reach absolute zero at finite steps. (the entropy
approaches a constant, most likely zero, as temperature goes to zero)
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Black holes are quantum objects
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Black holes are quantum objects
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Part Il
Hawking radiation as tunneling




Thermal v.s. non-thermal (featured)

« Parikh-Wilczek regarded Hawking radiation as a tunneling process (with back
reaction or energy conservation) and derived the tunneling rate: [PW, PRL 2000]
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 The tunneling rate is composed of a thermal part and non-thermal part. This
suggests radiation contains more features than just temperature (determined by
mass M).
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Energy Conservation = no information loss

» The exponent is simply the change of Bekenstein-Hawking entropy as the
(Schwarzschild) black hole loses a bit of energy/mass w via tunneling. The
conservation of entropy/information may help resolve the notorious information
loss paradox [Zhang-Cai-You-Zhan, PLB 2009; Kyung Kiu Kim-W, PLB 2014; Kuwakino-W, JHEP

2015] or reveal the existence of remnant [LiXiang, PLB 2007; Yi-Xin Chen, Kai-Nan Shao, PLB
2009]

o Or not [Mathur, CQG 2009], see also Firewall [AMPS, JHEP 2013]

« We have two observations here:
1. Microscopic degrees of freedom to carry information are still unclear.

2. PWtunneling rate can be derived without concept of spacetime [Braunstein-Patra,
PRL 2011]

« Is a quantum mechanical model of Hawking radiation with PW tunneling feature
possible?




Part Il
Hawking radiation as stimulated emission




Hawking radiation as stimulated emission
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FIG. 1. (Left) Degenerate excited states |b;) and |by) are stimulated by a photon in the cavity.

(Right) The stimulated emission may have different feature depending on which transition (a;|b;)

or (ay|bz) occurs.




Stimulated emission = PK tunneling rate

the proportionality coefficients a and [ will be determined shortly. At the large
black hole limit where 1/M < w <. M, equation (2) can be cast into

#{m} ot {fll,fllﬂfm :I'ﬁ w Ty {ir_'rll—_illi-‘l: 1|-..|r~-|..|jll| (4:]
here
C(M,w) = (5 + 5 — 328 - 328" ) Mw + (; + § + 168" )’ + O(w°). (5)

We remark the choices of coefficients a and [ as follows:
« To recover the Boltzmann factor, we choose 3 = 1/2 such that the leading term 1n

function C(M,w) vanishes. This suggests those degrees of freedom are seated at

the horizon.”

+ To reproduce the Parikh-Wilczek nonthermal spectrum, we further choose a = 2.

This implies that the degeneracy at each energy level 1s twice amount of the
black hole entropy, for Sgy = A/4.

* |sotropic metric is used to
calculate area

ds* = —

(1= M/2r)

(1+ M/2r)

2
2(].!2 + (14 M/2r) (dr® + r2d$?).




Part IV
Hairy horizon and non-equilibrium




Supertranslation and soft hair

« In the Jaynes-Cummings model of cavity-black holes, we may promote uneven coupling g;
to some angle-dependent function.

« Asymptotc symmetry of asymptotic flat space (AFS) = infinite-dimensional Bondi-Burg-
Metzner-Sachs (BMS) group, i.e. Lie(BMS4) =S0(1,3) IX'S ; S is supertranslation generated
by asymptotic Killing vector, determined by arbitrary function f [Bondi;Burg-Metzner; Sachs 62]
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Schwarzschild black hole with soft hair horizon

« Weinberg’s soft gravitons is manifestly Goldstone bosons of spontaneously broken
supertranslation. [Weinberg 65; Lysov-Mitra-Strominger 15] This soft dof's might
contribute to black hole entropy. [Hawking-Perry-Strominger 16]

« Apply supertranslation to SSBH solution in isotropic metric, with hair function C(z)
[Compere-Long 2016]
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Tunneling through hairy horizon

. Applly PT tunneling method along a fixed angular direction, we obtain tunneling rate per solid
angle
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 Thisimplies a distribution of entropic den5|ty

d ; ‘ ;
d_g = M+\/M? — 4||DC||? + 4||DC||* In { M + /M? — 4||DC||?}

o At limit of small ||DC||/M, the entropy receives log correction from soft hair
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Non-equilibrium thermodynamics

« We may interpret the hairy correction as non-equilibrium perturbation (if we place
the black hole in a box with thermal bath)

S™ed = 4w M2 + a(M)||DC|? o
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non-equilibrium perturbation

« One may define a non-equilibrium temperature away from Hawking temperature,
which reflects the uneven surface gravity near horizon
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Gedanken exp to measure ©
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FIG. 1: A Gedanken experiment of thermometer placed near a hairy black hole to measure non-equilibrium temperature.
Although the heat exchange between the black hole and the thermometer is balanced, Thq:r is different from the equilibrium

Hawking temperature Ty due to the transverse heat flow ¢ driven by the difference of hair functions C' and C” across the
thermometer.
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Entanglement at hairy horizon




Alice falls into a hairy black hole

Soft Horizon
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Figure 1: A Gedanken scenario that Alice and Rob share an entangled qubit at past timelike infinity i~ . Alice
then free-falls towards the black hole while Rob hangs around at the horizon. The degradation of entanglement
might depend on Rob’s angular location if the horizon were supertranslated by soft charges.




A hairy black hole forms by a shock wave

Singularity

Figure 2: A black hole is formed by a shock wave where the soft hair function C(ZA) is point-wisely mapped to
the waveform factor f(z*) via the eq. (14).




A shock wave with arbitrary waveform

ds? = —dudv+ f(zY)d (v — up) du® + 2y pdz"d2P, b=v-0(u—up)f(z"),

= —du do — O (u—ugp) E)Bf(zA)du. dz? + r?y pd2d2P.

Near horizon geometry of hairy black hole
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Rindler space Sphere part

Point-wise mapping between hair and form
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Mutual information v.s. Negativity

I(A:B):SA—I-SB—SAB?

Sa = —Tr(palogpa).

& = log TI‘|,0TB| = log(1 + 2 Z [Ail),
A <0

where \; are the negative eigenvalues of the matrix p’2. The partial transposed reduced density

matrix p’2 of p is obtained by exchanging the subsystem B’s qubit as |m n){(p q| — |m q){(m n|.




Mutual information/Negativity variation
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