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Introduction

Metal 
Freely moving electrons 
Described by Drude model: conventional metal 
Bad metal :  
Resistivity increases as temperature increased

ρ ∼ T
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Introduction

Insulator 
No freely moving electrons 
Strong electron-electron interaction: Mott 
Strong electron-disorder interaction: Anderson 
Resistivity decreases as temperature increased
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Introduction
Metal-Insulator Transition(MIT) 

The MIT is one of the oldest, not yet understood well in condensed matter physics 
MIT can capture properties of quantum critical point 
It is very hart to describe different excitations in one model

Introduction to Metal-Insulator Transitions

semiconductors which led to the discovery of the transistor. More recent e↵orts drifted
to structures of reduced dimensionality and devices such as silicon MOSFETs (metal-
oxide-semiconductor field-e↵ect transistors), which can be found in any integrated
circuit.

Fig. 1.2 Quantum critical behavior near a metal-insulator transition. Temperature depen-

dence of the resistance for di↵erent carrier concentrations is shown schematically in (a).Well

defined metallic or insulating behavior is observed only at temperatures lower than a char-

acteristic temperature T < T ⇤
that vanishes at the transition. At T < T ⇤

, the system is

in the “quantum critical region”, as shown in (b). As the system crosses over from metal

to insulator, the temperature dependence of the resistivity changes slope from positive to

negative.

1.1.1 Why is the MIT an important problem?

In contrast to elemental materials, in systems close to the MIT the physical properties
change dramatically with the variation of control parameters such as the carrier con-
centration, the temperature, or the external magnetic field. Such sensitivity to small
changes is, indeed, quite common in any material close to a phase transition. In doped
insulators this sensitivity follows from the vicinity to the metal-insulator transition.
The sharp critical behavior is seen here only at the lowest accessible temperatures, be-
cause a qualitative distinction between a metal and an insulator exists only at T = 0
(Fig. 1.2). Since the basic degrees of freedom controlling the electrical transport proper-
ties are electrons, and the transition is found at T = 0, quantum fluctuations dominate
the critical behavior. The metal-insulator transition should therefore be viewed as per-
haps the best example of a quantum critical point (QCP), a subject that has attracted
much of the physicist’s fancy and imagination in recent years (Sachdev, 2011). As near
other QCPs, one expects the qualitative behavior here to display a degree of univer-
sality, allowing an understanding based on simple yet fundamental physical pictures
and concepts. Before we understand the basic mechanisms and process that control

1112.6166: Dovrosavljevic
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Introduction
Insulating mechanism 

Interaction induced insulator: Mott insulator 
Impurity(or disorder) induced insulator: Anderson insulator

Holography?
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Introduction
Holography(gauge/gravity duality) 

AdS/CFT: Strongly interacting gauge theory in d-dimension can be described by weakly interacting 
gravity theory in d+1-dimension 

Boundary system  Bulk gravity 

Strongly interacting electron  background geometry 

Temperature  Hawking temperature of black hole 

Conserved charge  U(1) gauge field 

Momentum relaxation  linear axion field 

Operator   field  

↔

↔

↔

↔

↔

𝒪Δ ↔ ϕm

⋯
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Introduction
Holography(gauge/gravity duality) 

AdS/CFT: Strongly interacting gauge theory in d-dimension can be described by weakly interacting 
gravity theory in d+1-dimension 

Boundary system  Bulk gravity 

Strongly interacting electron  background geometry 

Temperature  Hawking temperature of black hole 

Conserved charge  U(1) gauge field 

Momentum relaxation  linear axion field 

Operator   field  

↔

↔

↔

↔

↔

𝒪Δ ↔ ϕm

⋯

MIT in holography 
Helical lattice(Donos, Hartnoll: Nature, 2013) 
Scalar potential(Refford, Horowitz: PRD, 2014) 
In massive gravity(Baggioli: PRL, 2015) 
⋯
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Background Geometry
Action in 3+1 dim.

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x

p
�g
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and the interaction term is
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4
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Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)
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Background Geometry
Action in 3+1 dim.

Electron interactions

1 Electric conductivity for model 2
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Background Geometry
Action in 3+1 dim.

Momentum relaxation

1 Electric conductivity for model 2

1.1 Backgraound geometry
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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1

E.O.M:  
Solution:  
Ward identities: 

∇2χ = 0
(χ1, χ2) = (β x, β y)

∇ν < Tμν > = < 𝒪I > ∇μ χ(0)
I + F(0)

μν < Jν >
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Background Geometry
Action in 3+1 dim.

Finite density

1 Electric conductivity for model 2
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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written as

�DC = �ccs + �diss. (7)

1

E.O.M:  

Conserved charge:  

Chemical potential: 

∇μFμν = 0

−gFrt = 𝒬

At ∼ μ +
𝒬
r
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Background Geometry
Action in 3+1 dim.

Order parameter
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+ r2(dx2

+ dy2)

�I
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as
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where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.
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terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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Chemical poential : µ = At(1) (6)

1.2 DC conductivity
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where L is a Lagrangian density of (1). To solve the equations of motion, we take an ansatz
as follows;

ds2 = �U(r)e2(w(r)�w(1))dt2 +
r2

L2
(dx2 + dy2) +

dr2

U(r)
,

A = At(r)dt , �I = � (x, y) , � = '(r). (5)

With this ansatz, the equations of motion for the axion filed �I are automatically satisfied.
From the fact that the Maxwell equation is a total derivative, we can get a conserved charge
density as

Q ⌘

p
�g

L
(1 + �2�

2)F tr. (6)

We rescale r, Q, U, � as

r !
r

rh
, Q !

L4

r2h
Q, U(r) !

L2

r2h
U(r), � !

L2

rh
�, (7)

such that all quantities are dimensionless. With this rescaling, the event horizon is located
at r = 1.

Together with Maxwell equations, the equations of motion for this hairy black brane can
be written as follows:

w0
�

1

4
r'02 = 0

'00 +

 
1

r
�

2�2r2 + Q2

�2'2+1 � 2 ('2 + 6) r4

4U r3

!
'0 +

�2Q2'

U r4 (�2'2 + 1)2
+

2'

U
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From the fact that the Maxwell equation is a total derivative, we can get a conserved charge
density as

Q ⌘

p
�g

L
(1 + �2�

2)F tr. (6)

We rescale r, Q, U, � as

r !
r

rh
, Q !

L4

r2h
Q, U(r) !

L2

r2h
U(r), � !

L2

rh
�, (7)

such that all quantities are dimensionless. With this rescaling, the event horizon is located
at r = 1.

Together with Maxwell equations, the equations of motion for this hairy black brane can
be written as follows:
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here we fix m2 = �2.
The entropy density and the temperature are given by
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Therefore, the solution of the equations of motion (8) can be parameterized by (�2, �, Q, '(1)).
On the other hand, the scalar field can be expressed at the boundary as

'(r)|r!1 ⇠
J'
r

+
< O >'

r2
+ · · · , (13)

here, we consider the leading term as the source of the boundary operator.
In this work, we set �2 = �0.2 which is negative value. As shown in the bulk action,

the coe�cient of F 2 term becomes �1
4(1+ �2�2) which should be negative for satisfying the

null energy condition. Therefore, we have to set �2 is not big enough such that the theory
is ghost free.

Similar to the holographic superconductor model, we find the appearance of scalar con-
densation. At high temperature, the background solution is usual 4 dimensional Reissner-
Nordstrom AdS geometry without scalar field(red line in Figure 1 (a)). However, the solution
with a scalar field is energetically preferred as temperature decreases. Hence, the hairy black
hole geometry becomes a physical solution shown as a blue line in Figure 1 (a).

One interesting phenomena of the model is the e↵ect of the momentum relaxation on
the value of scalar condensation. Figure 1 (b) shows the momentum relaxation parameter
� dependence of the scalar condensation for given charge density. In this calculation, we
use the canonical ensemble simply due to the convenience of calculation. As shown in the
figure, as the momentum relaxation parameter increases, the value of the scalar condensa-
tion also increases. Therefore one can say that the momentum relaxation enhances scalar
condensation. In other words, the order parameter can be enhanced by impurities.

The enhancement of the scalar condensation by impurities seems to be non-trivial in this
model. From the bulk action point of view(2), there is no direct interaction term between
the axion field and the real scalar field which governing order parameter. However, one
can find that there are complicated mixing between all fields in the equations of motion
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Background Geometry
Impurity effect on the scalar condensation 

Impurity enhances scalar condensation through gravity(electron interaction)
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1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x
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and the interaction term is

S2 = �
Z p
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4
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Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)

1

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x

p
�g

✓
R� 2⇤� 1

2
(@�)2 � 1

4
F 2 � 1

2
(@�)2 � 1

2
m2�2

◆
, (2)

and the interaction term is

S2 = �
Z p

�g
�2
4
�2F 2. (3)

Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are

RMN � 1

2
gMNL� 1

2
@M�@N�� 1

2
@M�@N�� 1

2

�
1 + �2�

2
�
FMPF

P
M = 0

r2��
✓
m2

+
1

2
�2F

2

◆
� = 0

rM

�
1 + �2�

2
�
FMN

= 0, (4)

where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)

1

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x

p
�g

✓
R� 2⇤� 1

2
(@�)2 � 1

4
F 2 � 1

2
(@�)2 � 1

2
m2�2

◆
, (2)

and the interaction term is

Sint = �
Z p

�g
�2
4
�2F 2. (3)

Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are

RMN � 1

2
gMNL� 1

2
@M�@N�� 1

2
@M�@N�� 1

2

�
1 + �2�

2
�
FMPF

P
M = 0

r2��
✓
m2

+
1

2
�2F

2

◆
� = 0

rM

�
1 + �2�

2
�
FMN

= 0, (4)

where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

• Fluctuations around background solution

�Gti = �t U(r)⇣i + �gti(r)

�Gri = r2�gri
�Ai = t(�Ei + ⇣ia(r)) + �ai(r). (6)

• Boundary current

J i
=

p
�g(1 + �2�

2
)F ir

= �U(r)(1 + �2�(r)
2
)�a0i(r)� a0t(r)�gti(r). (7)

1

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x

p
�g

✓
R� 2⇤� 1

2
(@�)2 � 1

4
F 2 � 1

2
(@�)2 � 1

2
m2�2

◆
, (2)

and the interaction term is

S2 = �
Z p

�g
�2
4
�2F 2. (3)

Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are

RMN � 1

2
gMNL� 1

2
@M�@N�� 1

2
@M�@N�� 1

2

�
1 + �2�

2
�
FMPF

P
M = 0

r2��
✓
m2

+
1

2
�2F

2

◆
� = 0

rM

�
1 + �2�

2
�
FMN

= 0, (4)

where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)

1



Duy Tan University, Da Nang6th International Conference on Holography, String Theory 
and Spacetime in Da Nang

Background Geometry
Phase diagram

condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
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Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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Since we consider a quantum phase transition described by a hairy black hole, the extremal
black hole will be considered. The metric function becomes

U(r) = U(r) =
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where we use a zero temperature condition
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. Thus our task is to find

the scalar configuration in this background. The scalar extends from the horizon to the
boundary of the extremal black brane.

As an important observation, the near horizon geometry of this metric is AdS2 ⇥ R2.
The e↵ective AdS radius is given as follows:
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If we consider a scalar configuration independent of the boundary spatial coordinates, (x, y)
as a lowest energy excitation which can be described by � = R(r)e�i!t, then the hairy
configuration is e↵ectively a two-dimensional probe in the AdS2. In general, a scalar field
has a mass bound dubbed BF bound. Only for the following case the scalar field is stable
in AdSd+1 with the radius L2:
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. (18)
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,
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Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
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1 + �2�

2
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+

Q2
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, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation

4

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x

p
�g

✓
R� 2⇤� 1

2
(@�)2 � 1

4
F 2 � 1

2
(@�)2 � 1

2
m2�2

◆
, (2)

and the interaction term is

S2 = �
Z p

�g
�2
4
�2F 2. (3)

Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are

RMN � 1

2
gMNL� 1

2
@M�@N�� 1

2
@M�@N�� 1

2

�
1 + �2�

2
�
FMPF

P
M = 0

r2��
✓
m2

+
1

2
�2F

2

◆
� = 0

rM

�
1 + �2�

2
�
FMN

= 0, (4)
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terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as
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Fluctuation around background solution

Regularity condition on the horizon: 

1 Electric conductivity for model 2

1.1 Backgraound geometry
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.
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ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

• Fluctuations around background solution

�Gti = �t U(r)⇣i + �gti(r)

�Gri = r2�gri
�Ai = t(�Ei + ⇣ia(r)) + �ai(r). (6)

The DC conductivity can be written in terms of the horizon data from standard technique
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�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (7)

1

Together with regularity and in-going condition at the horizon, the fluctuation of each
field can be expressed as

�gti(r) ⇠ �g0ti + · · · , �hti(r) ⇠
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Ei

4⇡T
log(r � rh) + · · · , ��I

⇠ ��I
0 + · · · . (19)

On the other hand, the gauge field fluctuation can be expressed in the boundary as

�Ai(r) ⇠ �Ei t+
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where Ji is response to the external source Ei which is nothing but the electric current.
Now, we define conserved current J i as
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This current J i is independent of radial direction from the equation of motion and it becomes
electric current J i at the boundary. Therefore, we can get DC conductivity in terms of the
horizon data as
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where �h is horizon value of scalar field. The first two terms in (22) is independent of
charge density. This term is understood as a consequence of the electron-hole pair cre-
ation by charge conjugation symmetry(�ccs). The last term is proportional to the charge
density and inverse of the impurity density which refers current dissipation by impurity or
lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be written as

�DC = �ccs + �diss. (23)

The dissipation part of the electric conductivity is same as usual holographic model.
But the charge conjugation symmetry part �ccs contains the horizon value of the scalar field
which gives finite condensation of the scalar field. With negative value of �2, �ccs term
can be suppressed by scalar condensation. We will discuss about suppression of the charge
conjugation symmetry part of the conductivity first and will consider full DC conductivity.

3.2 DC conductivity in zero charge density

In this section, we discuss DC conductivity without charge carrier density Q = 0. The
background solution now is nothing but the Schwartzchild black hole with momentum re-
laxation. But, the interaction term between U(1) gauge field and the real scalar ' can exist
in fluctuation level and it a↵ects DC conductivity.
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Together with regularity and in-going condition at the horizon, the fluctuation of each
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On the other hand, the gauge field fluctuation can be expressed in the boundary as
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where Ji is response to the external source Ei which is nothing but the electric current.
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where �h is horizon value of scalar field. The first two terms in (22) is independent of
charge density. This term is understood as a consequence of the electron-hole pair cre-
ation by charge conjugation symmetry(�ccs). The last term is proportional to the charge
density and inverse of the impurity density which refers current dissipation by impurity or
lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be written as

�DC = �ccs + �diss. (23)

The dissipation part of the electric conductivity is same as usual holographic model.
But the charge conjugation symmetry part �ccs contains the horizon value of the scalar field
which gives finite condensation of the scalar field. With negative value of �2, �ccs term
can be suppressed by scalar condensation. We will discuss about suppression of the charge
conjugation symmetry part of the conductivity first and will consider full DC conductivity.

3.2 DC conductivity in zero charge density

In this section, we discuss DC conductivity without charge carrier density Q = 0. The
background solution now is nothing but the Schwartzchild black hole with momentum re-
laxation. But, the interaction term between U(1) gauge field and the real scalar ' can exist
in fluctuation level and it a↵ects DC conductivity.
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Fluctuation around background solution

Boundary current

Fluctuation equation + Regularity condition on the horizon: DC conductivity

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
d4x
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and the interaction term is

S2 = �
Z p

�g
�2
4
�2F 2. (3)

Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

• Fluctuations around background solution

�Gti = �t U(r)⇣i + �gti(r)

�Gri = r2�gri
�Ai = t(�Ei + ⇣ia(r)) + �ai(r). (6)

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (7)

1 ∼ (1 + γ2ϕ(∞))Ji
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The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
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Q2
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, (9)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (9) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (10)

• Q = 0

In the absence of symmetry breaking(�h = 0), DC conductivity becomes one from (9)

without charge carrier density Q. It can be understood from the electron-hole pair creation

by charge conjugation symmetry [1406.1659]. However, when the scalar field condensed, �h

has finite value and it can suppress for negative value of �2.
With negative value of �2, one can find parameters for vanishing DC conductivity. For

example, if we set �2 = �0.2, �h = 1/
p
0.2 and Q = 0 then DC conductivity becomes zero

for any value of �. But we are focusing on the spontaneous symmetry breaking phase, we

have to check that there is solution where the source of scalar field vanishes. Figure 1 shows

that the source of scalar field vanishes at � ⇠ 3. With these parameters, electron-hole pair

creation is perfectly suppressed and hence DC conductivity vanishes.

To investigate phase structure, we calculate renormalized on-shell action as a function

of temperature. Figure 2 (a) shows di↵erence between the value the on-shell action of the

background solution and the value of the RN BH.

In the figure, background solution can be divided by 3 phases. At high temperature(T >
T ⇤
2 ), RN AdS black hole is energetically favored. In the intermediate temperature( T ⇤

1 <
T < T ⇤

2 ), the hairy black hole solution which has scalar condensation at the boundary

has lower energy. There is first order phase transition from RN black hole to hairy black

hole at T = T ⇤
2 . The hairy black hole solution continued until T = T ⇤

1 and the solution

becomes unstable blow T < T ⇤
1 because the coe�cient of the kinetic term of the Maxwell

field becomes negative near horizon region. This violates null-energy condition. We expect

that there is another phase transition which does not have black hole horizon. Kyung Kiu

Kim is looking for the solitonic solution below T ⇤
1 .

2

Together with regularity and in-going condition at the horizon, the fluctuation of each
field can be expressed as
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On the other hand, the gauge field fluctuation can be expressed in the boundary as

�Ai(r) ⇠ �Ei t+
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r
+ · · · , (20)

where Ji is response to the external source Ei which is nothing but the electric current.
Now, we define conserved current J i as
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This current J i is independent of radial direction from the equation of motion and it becomes
electric current J i at the boundary. Therefore, we can get DC conductivity in terms of the
horizon data as
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eW (1)
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, (22)

where �h is horizon value of scalar field. The first two terms in (22) is independent of
charge density. This term is understood as a consequence of the electron-hole pair cre-
ation by charge conjugation symmetry(�ccs). The last term is proportional to the charge
density and inverse of the impurity density which refers current dissipation by impurity or
lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be written as

�DC = �ccs + �diss. (23)

The dissipation part of the electric conductivity is same as usual holographic model.
But the charge conjugation symmetry part �ccs contains the horizon value of the scalar field
which gives finite condensation of the scalar field. With negative value of �2, �ccs term
can be suppressed by scalar condensation. We will discuss about suppression of the charge
conjugation symmetry part of the conductivity first and will consider full DC conductivity.

3.2 DC conductivity in zero charge density

In this section, we discuss DC conductivity without charge carrier density Q = 0. The
background solution now is nothing but the Schwartzchild black hole with momentum re-
laxation. But, the interaction term between U(1) gauge field and the real scalar ' can exist
in fluctuation level and it a↵ects DC conductivity.
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DC conductivity without charge carrier(Q = 0)

Temperature dependence of DC conductivity
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condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.

RN AdS

Hairy BH

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

/β2

T/
β

Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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Figure 6 (a) shows �2 dependence of DC conductivity. Horizontal and vertical dashed
line denote DC conductivity in the limit of �2 ! 0 and �2 ! 1 respectively. In the absence
of �2 coupling, DC conductivity is simply 1 in all temperature. But there still exist phase
transition from the hairy black hole to the RN-AdS black hole at TC/�C which is red dot
in Figure 6 (a). As �2 coupling increases, the gap is generated where DC conductivity
becomes negative. The gap scale T⇤/�⇤ also increases as �2 is increasing. In the region of
T⇤/�⇤ < T < TC/�C , DC conductivity is monotonically increasing to the temperature. This
implies resistivity is decreasing to temperature, @⇢/@T < 0 which is typical behavior of the
insulator. Therefore, we expect that the dual system of the hairy black hole solution with
�2 interaction is in insulating phase. The �2 dependence of T⇤/�⇤ is drawn in Figure 6 (b).
The gap scale T⇤/�⇤ seems to approach to TC/�C in the limit of �2 ! 1. In this limit, the
gap fully occupies insulating region and hence only gapped and metallic phase exist.

3.3 DC conductivity with finite charge density

In the presence of charge carrier density, DC conductivity is consist of charge conjugation
symmetry part and dissipation part as in (27),

n �DC = (1 + �2'2
h) +

eW (1)Q2

r2h�
2 for hairy BH

�DC = 1 + Q2

r2h�
2 for RN AdS BH.

(30)

When temperature is low enough(T/� < (T/�)C), the hairy black hole is a physical
solution and the DC conductivity becomes the first line of (30). On the other hand, RN
AdS black hole is a physical solution at high temperature and hence we get standard DC
conductivity for RN black hole as the second line of (30). In the case of the DC conductivity
for hairy black hole, we use numerical solution with source free condition for real scalar field.
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and �2 = �0.2. The blue and red line denotes DC conductivity in hairy black hole solution
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and in RN AdS black hole solution respectively. There are two key features for the DC
conductivity in hairy black hole. One is that the DC conductivity decreases as temperature
is lowered which indicates that the dual system of the hairy black hole behaves like an
insulator(@⇢/@T < 0) similar to zero charge density case. The other one is that the DC
conductivity goes to finite value when temperature approach to zero. It is due to the
existence of charge carrier density Q in the system.

After phase transition to RN AdS black hole at (T/�)C , DC conductivity behaves di↵er-
ently to the hairy black hole case. DC conductivity decreases as temperature is increasing.
It is not clear in the figure, but we can analytically show the slope of DC conductivity is
always negative. See Appendix ().
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Figure 9: (a) Temperature dependence of DC conductivity for Q/� = 0.1 and �2 = �0.2.
(b) Temperature dependence of DC conductivity in hairy black hole phase for di↵erent �2.
Black dots denote phase transition point to RN black hole.
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existence of charge carrier density Q in the system.
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condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation

4

(a) (b)

Figure 6: (a) Temperature dependence of the DC conductivity along fixed charge density
lines. (b) Fixed charge density lines correspond to (a). Here, we set m2 = �2/L2 and
� = �0.2.

The overall temperature dependence of DC conductivity in both the insulating and
metallic phases is shown in Figure 6 (a). In the figure, blue lines correspond to the DC
conductivity for the insulating phase and red ones to the metallic phase. The charge den-
sity corresponding to each line is shown in Figure 6 (b). In the figure, DC conductivity
monotonically increases in the insulating phase while it decreases in the metallic phase.
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Figure 7: The charge density dependence of DC conductivity at zero temperature for � =
�0.2. The dashed line indicates the DC conductivity in RN-AdS black brane solution.

To see the physical properties of each phase, we calculate DC conductivity near zero
temperature with � = �0.2. See Figure 7. In the figure, the dashed line denotes DC
conductivity in the metallic phase showing quadratic behavior in charge density. The point
where the conductivity line leaves the dashed line is the phase transition point to the insulat-
ing phase. In the insulating phase, the DC conductivity decreases faster than in the metallic
phase as the impurity density becomes higher than the charge-carrier density. In the fast
dissipation limit(Q/�2

⌧ 1), DC conductivity approaches zero for finite � interaction(The
� dependence of the conductivity is shown in Appendix A). It implies that not only the
dissipative part in the DC conductivity (25) but also the charge conjugation symmetry part
of the DC conductivity are suppressed. Therefore, the low-temperature and fast dissipation
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation

4

Metal–insulator transition in two-dimensional electron systems 5

2. Experimental results in zero magnetic field

2.1. Resistance in zero magnetic field, experimental scaling, reflection symmetry

The first experiments that demonstrated the unusual temperature dependence of the resistivity
(Kravchenko et al 1994, 1995, 1996) were performed on low-disordered silicon metal-oxide-
semiconductor field-effect transistors (MOSFETs) with maximum electron mobilities reaching
more than 4 × 104 cm2 V−1 s−1, mobilities that were considerably higher than in samples used
in earlier investigations. It was the very high quality of the samples that allowed access to the
physics at electron densities below 1011 cm−2. At these low densities, the Coulomb energy, EC ,
is the dominant parameter. Estimates for Si MOSFETs at ns = 1011 cm−2 yield EC ≈ 10 meV,
while the Fermi energy, EF , is about 0.6 meV (a valley degeneracy of two is taken into account
when calculating the Fermi energy, and the effective mass is assumed to be equal to the band
mass, mb). The ratio between the Coulomb and Fermi energies, r∗ ≡ EC/EF , thus assumes
values above 10 in these samples.

Figure 1(a) shows the temperature dependence of the resistivity measured in units
of h/e2 of a high-mobility MOSFET for 30 different electron densities ns varying from
7.12 × 1010 to 13.7 × 1010 cm−2. If the resistivity at high temperatures exceeds the quantum
resistance h/e2 (the curves above the dashed red line), ρ(T ) increases monotonically as the
temperature decreases. This behaviour is characteristic of an insulator. However, for ns above
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Figure 1. (a) Temperature dependence of the B = 0 resistivity in a dilute low-disordered
Si MOSFET for 30 different electron densities ns ranging from 7.12 to 13.7 × 1010 cm−2.
(b) Resistivity versus T/T0, with T0(ns) chosen to yield scaling with temperature. The inset
shows the scaling parameter, T0, versus the deviation from the critical point, |ns − nc|; data are
shown for silicon MOSFETs obtained from three different wafers. Open symbols correspond to
the insulating side and closed symbols to the metallic side of the transition. From Kravchenko et al
(1995).
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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2. Experimental results in zero magnetic field

2.1. Resistance in zero magnetic field, experimental scaling, reflection symmetry

The first experiments that demonstrated the unusual temperature dependence of the resistivity
(Kravchenko et al 1994, 1995, 1996) were performed on low-disordered silicon metal-oxide-
semiconductor field-effect transistors (MOSFETs) with maximum electron mobilities reaching
more than 4 × 104 cm2 V−1 s−1, mobilities that were considerably higher than in samples used
in earlier investigations. It was the very high quality of the samples that allowed access to the
physics at electron densities below 1011 cm−2. At these low densities, the Coulomb energy, EC ,
is the dominant parameter. Estimates for Si MOSFETs at ns = 1011 cm−2 yield EC ≈ 10 meV,
while the Fermi energy, EF , is about 0.6 meV (a valley degeneracy of two is taken into account
when calculating the Fermi energy, and the effective mass is assumed to be equal to the band
mass, mb). The ratio between the Coulomb and Fermi energies, r∗ ≡ EC/EF , thus assumes
values above 10 in these samples.

Figure 1(a) shows the temperature dependence of the resistivity measured in units
of h/e2 of a high-mobility MOSFET for 30 different electron densities ns varying from
7.12 × 1010 to 13.7 × 1010 cm−2. If the resistivity at high temperatures exceeds the quantum
resistance h/e2 (the curves above the dashed red line), ρ(T ) increases monotonically as the
temperature decreases. This behaviour is characteristic of an insulator. However, for ns above
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Figure 1. (a) Temperature dependence of the B = 0 resistivity in a dilute low-disordered
Si MOSFET for 30 different electron densities ns ranging from 7.12 to 13.7 × 1010 cm−2.
(b) Resistivity versus T/T0, with T0(ns) chosen to yield scaling with temperature. The inset
shows the scaling parameter, T0, versus the deviation from the critical point, |ns − nc|; data are
shown for silicon MOSFETs obtained from three different wafers. Open symbols correspond to
the insulating side and closed symbols to the metallic side of the transition. From Kravchenko et al
(1995).

Kravchenko et al (1995)

T* = TC |Q − QC |δ , ρ* = ρTν

(a) (b)

Figure 13: The gray region denotes the parameter space where any hairy configuration is
not allowed. See Figure 9. (b) lies in the white region.

Appendix C Scaling behavior of the resistivity

In this section, we discuss the scaling behavior of resistivity. The several cases of two-
dimensional electron systems showing metal-insulator transition have interesting scaling
behavior [3, 36]. The scaling property can be obtained by rescaling temperature and re-
sistivity using critical charge density(QC) where ‘quantum phase transition’ appears and
critical temperature(TC) for metal-insulator transition as follows:

T ⇤ = TC |Q�QC |
� , ⇢⇤ = ⇢T ⌫ , (34)

where all quantities are scaled by impurity density � as used in the paper. Figure 14 shows
the scaling behavior of resistivity for each phase. In the figure, the upper lines are resistivity
in the insulating phase which decreases with temperature and the lower lines are resistivity
in conducting phase which increases as the temperature increases. If we choose (�, ⌫) to be
(�1/5, � 2/3), all resistivity lines in the insulating phase are on top of each other. With
the value of (�7/2, 1/4), all the resistivity lines in conducting phase are overlapped. This
scaling behavior appears to wide range around the ‘quantum phase transition’ point.
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Figure 14: Scaling behavior of DC conductivity.

The results are di↵erent from the experimental data of metal-insulator transition mate-
rials in [3,36]. We speculate that the reason comes from the absence of critical temperature
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condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.
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The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation
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Discussion and Future direction

We construct a gravity system with scalar-gauge field interaction 
We find a phase transition between RN AdS black hole and a hairy black hole 
We find quantum phase transition at zero temperature from density effect in IR 
Impurity enhances scalar condensation: “Order parameter enhanced by disorder” 
Scalar condensation leads to the insulating phase 
The insulating phase comes from the localization of electron-hole pair creation 
We realize ‘Anderson insulator’-metal transition in holography

Physical meaning of the order parameter : AFM order? 
 Calculation of AC conductivity: gap or pseudo-gap creating mechanism  
 Couple to the complex scalar field: Superconducting dorm?
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