Fluxes of Scalar Field in Scattering to Rotating AdS Black Holes

Based on:

B. Gwak, JCAP 10 (2021) 012 [arXiv:2105.07226 [gr-qc]] and B. Gwak, JCAP 10 (2022) 077 [arXiv:2207.13822 [gr-qc]].
H. Han and B. Gwak, JHEP 08 (2023) 102, [arXiv:2306.10288 [gr-qc]].
J. Ko and B. Gwak, JHEP 03 (2024) 072, [arXiv:2312.17014 [gr-qc]].

Bogeun Gwak Department of Physics, Dongguk University, Seoul Campus, Republic of Korea

2024.08.23. THE 7TH INTERNATIONAL CONFERENCE ON HOLOGRAPHY AND STRING THEORY IN DA NANG

Black Holes in GR

 In general relativity, the spacetime geometry is associated with energy and momentum.

 Kerr black hole and Reissner-Nordström (RN) black hole Rotation

Electric charge

Black Holes with Observer

- There is a surface where no matter can escape from the black hole.
- No light from inside: **BLACK HOLE** to the observer.
- The surface is called **EVENT HORIZON**.
- The **CURVATURE SINGULARITY** is at their center.

Black Holes with Observer

- There is a surface where no matter can escape from the black hole.
- No light from inside: **BLACK HOLE** to the observer.
- The surface is called **EVENT HORIZON.**
- The **CURVATURE SINGULARITY** is at their center.

Geodesics in Spacetime

• Their spacetimes are distinguishable from metric:

$$\begin{aligned} \textbf{Schwarzschild BH} & ds^2 = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \\ \textbf{Kerr BH} & ds^2 = -\frac{\Delta_r}{\rho^2} \left(dt - a \sin^2 \theta d\phi\right)^2 + \frac{\rho^2}{\Delta^r} dr^2 + \rho^2 d\theta^2 + \frac{\sin^2 \theta}{\rho^2} \left(a dt - (r^2 + a^2) d\phi\right)^2 \\ \textbf{RN BH} & ds^2 = -\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right) dt^2 + \left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \end{aligned}$$

• These differences can be observed in geodesics of a test particle.

Motions of a particle

Wave Scattering to Black Holes

- Instead of a particle, considering a wave provides interesting phenomena different from cases of a particle.
- According to its spin, scalar, Dirac, gauge, and gravitational fields.
- Wave given by frequency, amplitude, and phase.

 $\Psi = \mathcal{I}e^{-i\omega(t+r)} + \mathcal{O}e^{-i\omega(t-r)}$

- Observing the scattering of waves by a black hole.
- Penrose process by a particle corresponding to **SUPERRADIATION**.
- In scattering, the wave <u>carries</u> energy and momentum into BHs.
- The changes in a black hole: $(M_B, J_B, Q_B) \rightarrow (M_B + dM_B, J_B + dJ_B, Q_B + dQ_B)$

Superradiation

- o Superradiation corresponds to Penrose process on a particle.
- External field can <u>extract energy</u> from a BH.
- By this interaction, BH energy is reduced (not increase).
- $_{\rm o}$ In flat ($\Lambda=0),$ extracted energy is dissipated to the infinity.
- $_{\rm O}$ However, AdS ($\Lambda<0)$ and dS ($\Lambda>0)$ provide different boundary conditions, so the behaviors are also different.
- AdS: amplification
 - BH bomb
- dS: complicated
 - cosmological horizon

Motivation

 Our general motivation: <u>describing reactions of black hole when it is</u> <u>interacted with matters.</u>

- $_{\circ}\,$ Focusing to BHs
- BHs from gravity theories
 - GR and modified gravity theory
 - Considering interaction with matters
- Matters from external particles or fields and their collisions to BH.
 - Scattering or geodesics
 - Features in spacetime geometries.
- Reactions
 - Perturbation from matters : from scattering
 - BH structure stability under the interactions : event horizon, inner horizon, modification.
 - Explanation on changes in BH states

Black Hole and Scattering of Scalar Field

Kerr-Newman-(Anti-)de Sitter Black Holes (KN(A)dS BHs)

- Four-dimensional spacetime
- Rotating and electrically charged black hole
- Including negative, zero, and positive cosmological constant
- Scalar Field
 - Zero spin field
 - Electrically charged scalar field coupled with KN(A)dS BHs

 $_{\circ}$ Scattering

- External scalar field scattered by KN(A)dS BHs
- Carried conserved charges from scalar field to KN(A)dS BHs
- Changes in BHs during an infinitesimally short time interval
 - Changes in mass, angular momentum, and electric charge
 - The final state from a given initial state.

Simple View on Our Work

• Maybe, the previous slide is too long to explain shortly.

• Let see more simple structures on our work.

Simple View on Our Work

• Maybe, the previous slide is too long to explain shortly.

• Let see more simple structures on our work.

Simple View on Our Work

• Maybe, the previous slide is too long to explain shortly.

• Let see more simple structures on our work.

Is it possible in considering a scalar field? (dM, dJ) constrained Stability on the event horizon The changes in BH by this scalar field Can we see this singularity by this observer?: Weak cosmic censorship conjecture

becomes a naked singularity

Metric: Kerr-Newman-(A)dS Black Holes

KN(A)dS BHs in Boyer-Lindquist coordinates:

$$ds^{2} = -\frac{\Delta_{r}}{\rho^{2}} \left(dt - \frac{a\sin^{2}\theta}{\Xi} d\phi \right)^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} + \frac{\Delta_{\theta} \sin^{2}\theta}{\rho^{2}} \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\phi \right)^{2},$$

$$\Delta_{r} = (r^{2} + a^{2}) \left(1 - \frac{1}{3} \Lambda r^{2} \right) - 2Mr + Q^{2}, \\ \Delta_{\theta} = 1 + \frac{1}{3} \Lambda a^{2} \cos^{2}\theta, \\ \rho^{2} = r^{2} + a^{2} \cos^{2}\theta, \\ \Xi = 1 + \frac{1}{3} \Lambda a^{2},$$

 $\hat{E} = -\frac{a}{\ell^2}L$

()

 $\Omega_h = \frac{a\Xi}{r_1^2 + a^2}$

 $\circ \ln r \gg 1$, the metric is not static: still rotating

- Asymptotic observer is rotating.
- Energy is not well defined. AdS boundary
- It needs correction.

 $\Omega_{\infty} = -$

Coordinate Transformations

• It is resolved by coordinate transformations:

$$t \to T, \quad \phi \to \Phi + \frac{1}{3} a \Lambda T$$

• Then, the metric becomes asymptotically static:

$$ds^{2} = -\frac{\Delta_{r}}{\rho^{2}\Xi^{2}} \left(\Delta_{\theta} dT - a\sin^{2}\theta d\Phi \right)^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} + \frac{\Delta_{\theta} \sin^{2}\theta}{\rho^{2}\Xi^{2}} \left(a \left(1 - \frac{1}{3} \Lambda r^{2} \right) dT - (r^{2} + a^{2}) d\Phi \right)^{2} \right)^{2}$$

• The mass, angular momentum, and electric charge: BG (2021)

$$M_{\rm B} = \frac{M}{\Xi^2}, \quad J_{\rm B} = \frac{Ma}{\Xi^2}, \quad Q_{\rm B} = \frac{Q}{\Xi}$$

• Hawking temperature, entropy, angular velocity, and electric potential:

$$T_{\rm h} = \frac{r_{\rm h} \left(1 - \frac{\Lambda a^2}{3} - \frac{a^2 + Q^2}{r_{\rm h}^2} - \Lambda r_{\rm h}^2 \right)}{4\pi \left(r_{\rm h}^2 + a^2 \right)}, \quad S_{\rm h} = \frac{1}{4} A_{\rm h} = \frac{\pi \left(r_{\rm h}^2 + a^2 \right)}{\Xi}, \quad \Omega_{\rm h} = \frac{a \left(1 - \frac{1}{3} \Lambda r_{\rm h}^2 \right)}{r_{\rm h}^2 + a^2}, \quad \Phi_{\rm h} = \frac{r_{\rm h} Q}{r_{\rm h}^2 + a^2}$$

Scalar Field Equation

• Charged scalar field with a covariant derivative:

$$S_{\Psi} = -\frac{1}{2} \int d^4x \sqrt{-g} \left(\mathcal{D}_{\mu} \Psi \mathcal{D}^{*\mu} \Psi^* + \mu^2 \Psi \Psi^* \right), \quad \mathcal{D}_{\mu} = \partial_{\mu} - iqA_{\mu}$$

• Field equations:

$$\frac{1}{\sqrt{-g}}\mathcal{D}_{\mu}\left(\sqrt{-g}g^{\mu\nu}\mathcal{D}_{\nu}\Psi\right) - \mu^{2}\Psi = 0, \quad \frac{1}{\sqrt{-g}}\mathcal{D}_{\mu}^{*}\left(\sqrt{-g}g^{\mu\nu}\mathcal{D}_{\nu}^{*}\Psi^{*}\right) - \mu^{2}\Psi^{*} = 0.$$

• Translation symmetries on (T, Φ) .

• The solution will be a form:

$$\Psi(T, r, \theta, \Phi) = e^{-i\omega T} e^{im\Phi} R(r) \Theta(\theta)$$

• The scalar field equation is separable into radial and theta equations.

Radial Equation

• The separated radial equation:

$$\frac{1}{R(r)}\partial_r \left(\Delta_r \partial_r R(r)\right) + \frac{1}{\Delta_r} \left(\omega(r^2 + a^2) - am\left(1 - \frac{1}{3}\Lambda r^2\right) - qQr\right)^2 - \mu^2 r^2 - \mathcal{K} = 0.$$

• For all range, we need numerical calculation.

- However, focusing on carried conserved quantities: outer horizon
- Solving the radial equation at the outer horizon.
- With tortoise coordinate, the radial solution at the outer horizon:

$$\mathcal{R}(r^*) = \mathcal{T}e^{-i(\omega - m\Omega_{\rm h} - q\Phi_{\rm h})r^*},$$

 $\circ \mathcal{T}$ is the transmission amplitude.

• The radial solution is only ingoing as a boundary condition.

θ -Directional Equation

 \circ θ -directional equation is the generalized scalar hyper-spheroidal equation with a separate variable:

 $\frac{1}{\sin\theta\,\Theta(\theta)}\partial_{\theta}\left(\sin\theta\Delta_{\theta}\partial_{\theta}\Theta(\theta)\right) - \frac{1}{\Delta_{\theta}}\left(a\omega\sin\theta - m\Delta_{\theta}\csc\theta\right)^{2} - a^{2}\mu^{2}\cos^{2}\theta + \mathcal{K} = 0,$

- $_{\circ}$ For a=0 or $\Lambda=0,$ this is just spheroidal harmonics: $\mathcal{K}=\ell(\ell+1)$
- With s-spin field with $\Lambda = 0$, spin-weighted spheroidal harmonics
- o Generalized scalar hyper-spheroidal equation with higher dimension
- This is a known numerical solution and satisfies:

 $\Theta(\theta)\Theta^*(\theta)d\Omega_2 = 1.$

• The details of $\Theta(\theta)$ is <u>not important</u>. It will be integrated into <u>unity</u>.

Carried Conserved Charges

• The scalar field solution at the outer horizon:

$$\Psi(T, r^*, \theta, \Phi) = \frac{\mathcal{T}}{\sqrt{r_{\rm h}^2 + a^2}} e^{-i\omega T} e^{-i(\omega - m\Omega_{\rm h} - q\Phi_{\rm h})r^*} \Theta(\theta) e^{im\Phi}$$

• The <u>fluxes</u> of the scalar field flowing into the horizon

$$dM_{\rm B} = \frac{4\pi |\mathcal{T}|^2}{\Xi} \omega (\omega - m\Omega_{\rm h} - q\Phi_{\rm h}) dT,$$

$$dJ_{\rm B} = \frac{4\pi |\mathcal{T}|^2}{\Xi} m (\omega - m\Omega_{\rm h} - q\Phi_{\rm h}) dT,$$

$$dQ_{\rm B} = \frac{4\pi |\mathcal{T}|^2}{\Xi} q (\omega - m\Omega_{\rm h} - q\Phi_{\rm h}) dT.$$

• The conserved charges should be preserved in the spacetime.

$$E, L, q \to M_{\rm B}, J_{\rm B}, Q_{\rm B}$$

 $_{\circ}$ During a <u>time interval dT, the changes in BH</u> from fluxes.

Near-Extremal KN(A)dS Black Holes

- Under infinitesimal changes, BH into <u>BH</u> in the final state.
- Near-extremal (and extremal) one can be different: <u>naked singularity</u>
- By the changes: $(M_B, J_B, Q_B) \rightarrow (M_B + dM_B, J_B + dJ_B, Q_B + dQ_B)$
- Δ_r : determining locations of horizons: Minimum value is **IMPORTANT**!

• By over-spinning, near-extremal BH can be a naked singularity or not.

Change in Minimum Value

 Measuring minimum value in initial and final states Minimum value **Near-extremal** Minimum location Minimum condition $\Delta_{\min} \equiv \Delta_r |_{r=r_{\min}}, \quad -\Delta_{\min} \ll 1, \quad \frac{\partial \Delta_r}{\partial r} |_{r=r_{\min}} = \frac{\partial \Delta_{\min}}{\partial r_{\min}} = 0, \quad \frac{\partial^2 \Delta_r}{\partial r^2} |_{r=r_{\min}} = \frac{\partial^2 \Delta_{\min}}{\partial r_{\min}^2} > 0,$ • The change in the minimum value is: $d\Delta_{\min} \equiv \Delta_{\min}(M_{\rm B} + dM_{\rm B}, J_{\rm B} + dJ_{\rm B}, Q_{\rm B} + dQ_{\rm B}, r_{\min} + dr_{\min}) - \Delta_{\min}(M_{\rm B}, J_{\rm B}, Q_{\rm B}, r_{\min})$ $=\frac{\partial\Delta_{\min}}{\partial M_{\rm B}}dM_{\rm B}+\frac{\partial\Delta_{\min}}{\partial J_{\rm B}}dJ_{\rm B}+\frac{\partial\Delta_{\min}}{\partial Q_{\rm B}}dQ_{\rm B}+\frac{\partial\Delta_{\min}}{\partial r_{\min}}dr_{\min}.$ • Applying near-extremal condition: $r_{\rm h} - r_{\rm min} = \epsilon \ll 1, \quad \Delta_{\rm min} = -\epsilon^2.$

 $_{\rm o}$ Then, all values can be rewritten in terms of $\epsilon.$

Black Hole in a Final State

• Under changes in conserved charges, the <u>minimum value</u> becomes:

 $\Delta_{\min} + d\Delta_{\min} = -\frac{8\pi |\mathcal{T}|^2 (r_{\rm h}^2 + a^2)(\omega - m\Omega_{\rm h} - q\Phi_{\rm h})^2}{r_{\rm h}} dT + \mathcal{O}(\epsilon).$

- The minimum value is always negative: **BLACK HOLE**
 - $_{\rm o}$ Cosmological constant Λ determines the boundary geometry and condition.
 - The asymptotic boundary is associated with the amplitude.
 - The square of the amplitude is always positive.
 - \circ <u>Regardless Λ , the conclusion is the same</u>.

• It is impossible to overspin KN(A)dS BHs beyond extremal condition.

- The singularity cannot be observed by outside static detector.
- o It is exactly what the weak cosmic censorship conjecture expects.

Our Recent Directions

Fluxes of Scalar Field in Scattering to Rotating AdS Black Holes

Scattering problems

- Quasinormal modes and superradiation instability
 - Scalar QNMs in C-metric and accelerating KNAdS black holes
 - 。 BG, **EPJP** 138 (2023) 7, 582
 - J. B. Amado and BG, **JHEP** (2024) 02
- Perturbation on black holes
 - Adding a mass fluctuation to black holes
 - Mass fluctuation in higher-dimensional black holes with large D limit.
 - H. Han and BG, **JHEP** 08 (2023) 102

• Thermodynamics

- Universal thermodynamic relation called Goon-Penco relation motivatied from WGC
 - Testing GP relation in black holes under near-extremal and near-Nariai limits.
 - J. Ko and BG, **JHEP** 03 (2024) 072

Summary

- We considered scalar field scattering which carries conserved quantities into a black hole.
- Owing to the conserved quantities, the black hole changes its mass, angular momentum, and electric charge.
- Even if these change the black hole, the black hole is still an outer horizon.

Thank You!