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Black Holes in GR

o In general relativity, the spacetime geometry is associated with energy 
and momentum.

o Einstein’s equation:

o The first and simplest black hole: Schwarzschild black hole (1916)

o Kerr black hole and Reissner-Nordström (RN) black hole

2

Einstein tensor

Cosmological constant metric

Energy-momentum tensor

Rotation Electric charge 



Black Holes with Observer

o There is a surface where no matter can escape from the black hole.

o No light from inside: BLACK HOLE to the observer. 

o The surface is called EVENT HORIZON.

o The CURVATURE SINGULARITY is at their center.
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Geodesics in Spacetime

o Their spacetimes are distinguishable from metric:

o These differences can be observed in geodesics of a test particle.
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Wave Scattering to Black Holes 

o Instead of a particle, considering a wave provides interesting phenomena 
different from cases of a particle.

o According to its spin, scalar, Dirac, gauge, and gravitational fields.

o Wave given by frequency, amplitude, and phase.

o Observing the scattering of waves by a black hole.

o Penrose process by a particle corresponding to SUPERRADIATION.

o In scattering, the wave carries energy and momentum into BHs.

o The changes in a black hole: 
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Superradiation 

o Superradiation corresponds to Penrose process on a particle.

o External field can extract energy from a BH.

o By this interaction, BH energy is reduced (not increase).

o In flat (Λ = 0), extracted energy is dissipated to the infinity.

o However, AdS (Λ < 0) and dS (Λ > 0) provide different boundary 
conditions, so the behaviors are also different.

o AdS: amplification

o BH bomb

o dS: complicated

o cosmological horizon
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Motivation

o Our general motivation: describing reactions of black hole when it is 
interacted with matters.

o Focusing to BHs

o BHs from gravity theories

o GR and modified gravity theory

o Considering interaction with matters

o Matters from external particles or fields and their collisions to BH.

o Scattering or geodesics

o Features in spacetime geometries.

o Reactions

o Perturbation from matters : from scattering

o BH structure stability under the interactions : event horizon, inner horizon, modification.

o Explanation on changes in BH states
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Black Hole and Scattering of Scalar Field

o Kerr-Newman-(Anti-)de Sitter Black Holes (KN(A)dS BHs)

o Four-dimensional spacetime

o Rotating and electrically charged black hole

o Including negative, zero, and positive cosmological constant

o Scalar Field

o Zero spin field

o Electrically charged scalar field coupled with KN(A)dS BHs

o Scattering

o External scalar field scattered by KN(A)dS BHs

o Carried conserved charges from scalar field to KN(A)dS BHs

o Changes in BHs during an infinitesimally short time interval

o Changes in mass, angular momentum, and electric charge

o The final state from a given initial state. 9



Simple View on Our Work 

o Maybe, the previous slide is too long to explain shortly. 

o Let see more simple structures on our work.

10

Kerr BH

M, J

𝒓𝒉 = 𝑴+ 𝑴𝟐 −
𝑱𝟐

𝑴𝟐

o If (𝑴 + 𝒅𝑴)𝟐 >
(𝑱+𝒅𝑱)𝟐

(𝑴+𝒅𝑴)𝟐
, it 

is still BH.

o If (𝑴 + 𝒅𝑴)𝟐 <
(𝑱+𝒅𝑱)𝟐

(𝑴+𝒅𝑴)𝟐
,

dM, dJ



Simple View on Our Work 

o Maybe, the previous slide is too long to explain shortly. 

o Let see more simple structures on our work.

11

Kerr BH

𝒓𝒉 = 𝑴+ 𝑴𝟐 −
𝑱𝟐

𝑴𝟐

o If (𝑴 + 𝒅𝑴)𝟐 <
𝑱+𝒅𝑱 𝟐

𝑴+𝒅𝑴 𝟐, it 

becomes a naked singularity.dM, dJ



Simple View on Our Work 

o Maybe, the previous slide is too long to explain shortly. 

o Let see more simple structures on our work.

12

Kerr BH

𝒓𝒉 = 𝑴+ 𝑴𝟐 −
𝑱𝟐

𝑴𝟐

o If (𝑴 + 𝒅𝑴)𝟐 <
𝑱+𝒅𝑱 𝟐

𝑴+𝒅𝑴 𝟐, it 

becomes a naked singularitydM, dJ

Is it possible in considering a scalar field? (dM, dJ) constrained

Stability on the event horizon

The changes in BH by this scalar field

Can we see this singularity by this observer?:

Weak cosmic censorship conjecture 



Metric: Kerr-Newman-(A)dS Black Holes

o KN(A)dS BHs in Boyer-Lindquist coordinates:

o In 𝑟 ≫ 1,  the metric is not static: still rotating

o Asymptotic observer is rotating.

o Energy is not well defined.

o It needs correction.
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Coordinate Transformations

o It is resolved by coordinate transformations:

o Then, the metric becomes asymptotically static:

o The mass, angular momentum, and electric charge:

o Hawking temperature, entropy, angular velocity, and electric potential:
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Scalar Field Equation

o Charged scalar field with a covariant derivative:

o Field equations:

o Translation symmetries on 𝑇,Φ .

o The solution will be a form:

o The scalar field equation is separable into radial and theta equations.
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Radial Equation

o The separated radial equation:

o For all range, we need numerical calculation.

o However, focusing on carried conserved quantities: outer horizon

o Solving the radial equation at the outer horizon.

o With tortoise coordinate, the radial solution at the outer horizon:

o     is the transmission amplitude.

o The radial solution is only ingoing as a boundary condition. 
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𝜃-Directional Equation

o 𝜃-directional equation is the generalized scalar hyper-spheroidal 
equation with a separate variable:

o For 𝑎 = 0 or Λ = 0, this is just spheroidal harmonics:

o With 𝑠-spin field with Λ = 0, spin-weighted spheroidal harmonics

o Generalized scalar hyper-spheroidal equation with higher dimension

o This is a known numerical solution and satisfies:

o The details of Θ(𝜃) is not important. It will be integrated into unity.
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Carried Conserved Charges

o The scalar field solution at the outer horizon:

o The fluxes of the scalar field flowing into the horizon

o The conserved charges should be preserved in the spacetime.

o During a time interval 𝑑𝑇, the changes in BH from fluxes.
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Near-Extremal KN(A)dS Black Holes

o Under infinitesimal changes, BH into BH in the final state.

o Near-extremal (and extremal) one can be different: naked singularity

o By the changes:

o Δ𝑟: determining locations of horizons: Minimum value is IMPORTANT!

o By over-spinning, near-extremal BH can be a naked singularity or not.
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Change in Minimum Value

o Measuring minimum value in initial and final states

o The change in the minimum value is:

o Applying near-extremal condition:

o Then, all values can be rewritten in terms of 𝜖.
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Black Hole in a Final State 

o Under changes in conserved charges, the minimum value becomes:

o The minimum value is always negative: BLACK HOLE

o Cosmological constant Λ determines the boundary geometry and condition.

o The asymptotic boundary is associated with the amplitude.

o The square of the amplitude is always positive.

o Regardless 𝛬, the conclusion is the same.

o It is impossible to overspin KN(A)dS BHs beyond extremal condition.

o The singularity cannot be observed by outside static detector.

o It is exactly what the weak cosmic censorship conjecture expects.
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Our Recent Directions

o Fluxes of Scalar Field in Scattering to Rotating AdS Black Holes

o Scattering problems

o  Quasinormal modes and superradiation instability

o Scalar QNMs in C-metric and accelerating KNAdS black holes

o BG, EPJP 138 (2023) 7, 582 

o J. B. Amado and BG, JHEP (2024) 02

o Perturbation on black holes

o Adding a mass fluctuation to black holes

o Mass fluctuation in higher-dimensional black holes with large D limit. 

o H. Han and BG, JHEP 08 (2023) 102

o Thermodynamics

o Universal thermodynamic relation called Goon-Penco relation motivatied from WGC

o Testing GP relation in black holes under near-extremal and near-Nariai limits. 

o J. Ko and BG, JHEP 03 (2024) 072
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Summary

o We considered scalar field scattering which carries conserved 
quantities into a black hole.

o Owing to the conserved quantities, the black hole changes its mass, 
angular momentum, and electric charge.

o Even if these change the black hole, the black hole is still an outer 
horizon.
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Thank You!
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