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Motivation

Can we understand nonperturbative IR physics from the fundamental theory
point of view?

- To understand IR (macroscopic) physics by the fundamental (microscopic) QFT,
we need to figure out a non-perturbative RG flow, involving all quantum effects.
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Holography

Classical gravity theory




AdS/CFT correspondence (Holography)

Classical SUGRA <«==p | Super-CFT at the AdS boundary
on AdS space-time 1to1 | (in_astrong coupling regime)

Due to the conformal symmetry, the RG flow is trivial.

How about a non-conformal and non-supersymmetric OF T like nuclear and condensed matter theories?

non-trivial RG flow

_EFTin IR (CMT) - not UV complete (the connection to the fundamental
theory is not clear)

Holography

- IR physics (?) - AdS space (UV complete)

Due to restoration of a conformal symmetry at critical (or fixed) points, some physical quantities like
entanglement entropy and correlation functions are constrained even at an IR region. This leads to a universal
feature of IR physics like critical exponents. Here, we investigate such universality in the IR fixed points by
applying the holographic methods.



Transverse field Ising model (EFT in CMt)

Hamiltonian

1) for g = 0, paramagnet with (0;,) =0

z

2) for g = oo ferromagnet with (07;) = +1

3) atg =1 2nd_order phase transition occurs (conformal at the critical point)

Entanglement entropy
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where K means a elliptic integral of the first kind.
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Entanglement entropy for massive field theory is given by
a

£

For the transverse field Ising model, the entanglement
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entropy near g = 1 reduces to

This correspondsto ¢ = % with a long-range correlation

which is a typical feature of fermionic conformal field theory.

- logarithmic divergence due to the conformal symmetry

- This is a typical feature of a two-dimensional CFT

- A similar feature can also appear at IR fixed points because of restoration of a conformal symmetry.

2 0.4
paramagnet

ferromagnet




Holographic IR physics

3-dimensional gravity theory representing the RG flow from a UV to IR fixed point
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with the following scalar potential
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where M; = —mi < 0and X > 0.

This gravity theory allows one local maximum at ¢ = 0 and two degenerated local minima at ¢+ = +mg/VA

¢ =0 ¢+ = bIR 1) Rolling of the scalar field from a

unstable to stable equilibrium point

describes the RG flow from a UV to
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IR fixed point on the dual QFT side.
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Intermediate energy scale

The geometric solution interpolating a local maximum and a local minimum describes the RG flow of a dual QFT.

To see this, we consider the following metric ansatz in the normal coordinate
ds* = dy® + ** Wy, datdz”
where a scale transformation of the dual QFT is represented as a translation in y-coordinate

Equations of motion
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In this case, the UV and IR fixed points appear at y = oo and —oo, respectively.

Numerical solution
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Entanglement entropy

Now, we investigate the entanglement entropy in the previous interpolation geometry.

According to the Ryu-Takayanagi proposal,
the entanglement entropy of the boundary theory can be described by the area of a minimal surface extending to the

dual geometry )
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boundary (y = 00) (1) Introducing a turning point Y

AdS the entanglement entropy and subsystem size are given by functions

of the turning point

(2) Removing the turning point, the entanglement entropy is

Yt Y / rewritten as a function of the subsystem size

In this case, the subsystem size is reinterpreted as the inverse of the

RG scale, which describes the real-space RG flow.

(3) What is a relation between the RG scale and a coupling constant?




The interpolation function can be understood as follows:

Gravity Dual QFT
AdS l l CFT
scalar field fluctuation deformation by a scalar operator / P’z O

In addition, the radial coordinate is reinterpreted as the RG scale of the dual QFT (momentum-space RG flow).

- Recalling that the subsystem size is uniquely fixed by the turning point ¢ = ¢ (yt),

the radial position of a turning point is also associated with the RG scale.

- In the normal coordinate system

)

ds* = dy” + (32"":'°7'np;,d;z"d;r’”
the RG scale of the dual QFT is given by

B = eA(yt)



In the UV and IR limits,

r ds* = dy? + Wy, do"dx” ﬁ

At the UV fixed point (y — o) at z — 0
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Now, we evaluate the entanglement entropy numerically for R =G = 1, my = v/3/2and A = 0.1

Numerical entanglement entropy
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As expected, the entanglement entropy shows a logarithmic divergence at UV and IR fixed points.



Analytic estimation of the leading entanglement entropy at fixed points

In the UV region,

the entanglement entropy is governed by
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Since the subsystem size is determined as a function of the turning point, we can reinterpret the turning point as the

energy scale of the dual QFT. Then, the turning point (or energy scale) is reexpressed in terms of the coupling
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Then, the entanglement entropy in terms of the coupling constant in the UV region is given by
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This shows a logarithmic behavior near the UV fixed point due to the conformal symmetry.




In the IR region,

the main contribution to the entanglement entropy comes from the geodesic extending the IR geometry

. Rg [ VE2H1
Sp~ lim — dox ———,
t=oo 4G ) 49 z

Then, the IR entanglement entropy becomes
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Using the IR profile of the scalar field
$(z) = grp — dp 27017

The IR entanglement entropy is in terms of the coupling constant
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For R=G=1,my=+3/2and X\ = 0.1

dSp — RV8A = 1.0316,

dlog(drr— ) 9q (\/8>\ +md + 16m2\ — M)

which is perfectly matched with the previous numerical result

Numerical entanglement entropy
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Anomalous dimension of a local operator

The RG scale dependent two-point function of a local operator

Two-point function at UV and IR fixed points

1
(—[t1 — ta]? + |21 — 22]2) 20V at a UV fixed point

(Ox(t1, 1) Ox(t2,22)) =

1
(Oy(t1, 1) Oy (b2, 2)) = (—[t — B2 1 |71 —mP)ix  atanIR fixed point

The conformal dimensions at UV and IR fixed points are generally different due to the RG flow.

In the holographic setup in the probe limit, we consider a bulk field X as the dual of Ox

This operator is affected by the change of the ground state. We study how a two-point function of a local

operator i1s modified under a nontrivial RG flow of the ground state
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The metric contains information about the RG flow of the ground state.



According to the AdS/CFT correspondence, the conformal dimension at the UV fixed point is given by
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Therefore, the UV two-point function becomes

with
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In the IR region where the background metric is modified, the equation in terms of the IR coordinate is
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As a result, the IR two-point function becomes
1

(=|t1 = to]? + |1 — 22]?)A1n

(Ox(t1, 1) Ox(t2, 22)) =




Therefore, the anomalous dimension is
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It is also possible to calculate the conformal dimension relying on the RG scale by
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with the geodesic length
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We perform this integral numerically and find the conformal dimension depending on the RG scale
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Discussion

- Using the holographic method, we describe the RG flow of the dual QFT correctly.

- At fixed points of 2-dimensional QFTs, the entanglement entropy generally shows a logarithmic

behavior due to the restoration of a conformal symmetry.

- Using the geodesic description, we also studied the change of the conformal dimension in the

probe limit.

- These holographic descriptions well describe the expected RG flow of QFTs.

- It would be interesting to investigate the RG flow of correlation functions beyond the probe

limit.



Thank you!



