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Three roads to Hawking radiation



1. Bogoliubov transformation





1. Bogoliubov transformation

Unitary transformation between operators:

from

𝝓 𝒙 =෍

𝒊

[𝒂𝒊𝒇𝒊(𝒙) + 𝒂𝒊
†𝒇𝒊

∗(𝒙)]

to

𝝓 𝒙 =෍

𝒊

[𝒃𝒊𝒑𝒊 𝒙 + 𝒃𝒊
†𝒑𝒊

∗ 𝒙 + 𝒄𝒊𝒒𝒊(𝒙) + 𝒄𝒊
†𝒒𝒊

∗(𝒙)]

so to speak,

𝒑𝒊 =෍

𝒋

[𝜶𝒊𝒋𝒇𝒋 + 𝜷𝒊𝒋𝒇𝒋
∗]

𝒒𝒊 =෍

𝒋

[𝜸𝒊𝒋𝒇𝒋 + 𝜼𝒊𝒋𝒇𝒋
∗]

𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†



𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†
Even though we start from the vacuum

𝒂𝝎| ۧ𝟎 = 𝟎

by using

𝒃𝝎 =෍

𝝎′

[𝜶𝝎𝝎′
∗ 𝒂𝝎′ − 𝜷𝝎𝝎′

∗ 𝒂
𝝎′
† ]

we obtain

𝒏𝝎 = 𝒃𝝎
† 𝒃𝝎 =෍

𝝎′

𝜷𝝎𝝎′
𝟐

This may be non-zero.

1. Bogoliubov transformation



𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†

𝜔

𝑢

𝑣

𝑣0

We obtain the relation

𝜶𝝎𝝎′
𝟐 = 𝒆𝟐𝝅𝝎/𝜿 𝜷𝝎𝝎′

𝟐

In addition, there is a normalization condition

෍

𝝎′

( 𝜶𝝎𝝎′
𝟐 − 𝜷𝝎𝝎′

𝟐) = 𝟏

In conclusion,

𝒏𝝎 ∝
𝟏

𝒆𝟐𝝅𝝎/𝜿 − 𝟏

1. Bogoliubov transformation

blue-shifted by factor 𝒗~𝒆𝜿𝒖



2. Renormalized energy-momentum tensor



2. Renormalized energy momentum tensor

We want to solve the equation

𝑮𝝁𝝂 = 𝟖𝝅 𝑻𝝁𝝂

where the energy-momentum tensor has ambiguities.

Moreover, the expectation values are divergent in general:

𝝓(𝒙)𝝓(𝒙)



2. Renormalized energy momentum tensor

In order to resolve these problems, renormalization techniques were developed.

Step 1. Obtain finite two-point correlation function, e.g., by the point splitting method:

𝐥𝐢𝐦
𝒙→𝒙′

𝝓(𝒙)𝝓(𝒙′) =
𝒄

𝒙 − 𝒙′
+ (finite terms)

Birrell and Davies, “Quantum fields in curved space”, 1982

Step 2. Using the two-point correlation function, we obtain the energy-momentum tensor.

Howard and Candelas, 1984



2. Renormalized energy momentum tensor

For two-dimensional cases, we can obtain the simpler form:

𝑻𝝁𝝂 =
𝑷

𝜶𝟐
(𝜶𝜶,𝒖𝒖 − 𝟐𝜶,𝒖

𝟐 ) − (𝜶𝜶,𝒖𝒗 − 𝜶,𝒖𝜶,𝒗)

− (𝜶𝜶,𝒖𝒗 − 𝜶,𝒖𝜶,𝒗) (𝜶𝜶,𝒗𝒗 − 𝟐𝜶,𝒗
𝟐 )

where 𝒅𝒔𝟐 = −𝜶𝟐𝒅𝒖𝒅𝒗.

For dilaton black holes, there can be a back-reaction even for 2D: CGHS model.

Davies, Fulling and Unruh, 1976

Callan, Giddings, Harvey and Strominger, 1991



2. Renormalized energy momentum tensor

Ashtekar, Pretorius and Ramazanoglu, 2011



3. Tunneling picture





3. Tunneling picture

Hartle and Hawking considered particle tunneling from inside to outside the horizon.

Hartle and Hawking, 1976



3. Tunneling picture

Using the analytic continuation, one can calculate the emission rate.

(probability to emit a particle with energy E) = 𝒆−
𝟐𝝅𝑬

𝜿 × (probability to absorb a particle with Energy E)

Hartle and Hawking, 1976



3. Tunneling picture

Parikh and Wilczek, 2000

One can also calculate a tunneling between two null geodesics.

𝑰𝒎 𝑺 = 𝑰𝒎න
𝒓𝒊𝒏

𝒓𝒐𝒖𝒕

𝒑𝒓𝒅𝒓 = 𝑰𝒎න
𝑴

𝑴−𝝎

න
𝒓𝒊𝒏

𝒓𝒐𝒖𝒕𝒅𝒓

ሶ𝒓
𝒅𝑯 = 𝟒𝝅𝝎 𝑴−

𝝎

𝟐

(𝑯 = 𝑴−𝝎′)

𝜞 ∝ 𝒆−𝟐 𝑰𝒎 𝑺



Why do we have to Wick-rotate

inside the horizon only?

Let’s revisit the Hartle-Hawking’s path integral.



We calculate the transition amplitude

𝑆 Ԧ𝑟′, Ԧ𝑟 = න
−∞

+∞

𝑑𝑡 𝑒−𝑖𝜔𝑡 𝐾 0, Ԧ𝑟′; 𝑡, Ԧ𝑟 ,

where 𝐾(0, Ԧ𝑟′; 𝑡, Ԧ𝑟) is the propagator with a regulator:

𝐾 0, Ԧ𝑟′; 𝑡, Ԧ𝑟 = −
𝑖

4𝜋2
1

𝑠 𝑥, 𝑥′ ± 𝑖𝜖
.

𝑥(𝑡, Ԧ𝑟)

𝑥′(𝑡′ = 0, Ԧ𝑟′)



Since the propagator satisfies the relation

𝐾 0, Ԧ𝑟′; 𝑡, Ԧ𝑟 = 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′ = 𝐾 −𝑡, Ԧ𝑟′ ; 0, Ԧ𝑟

we may have a freedom to choose one of them.

𝑥(𝑡, Ԧ𝑟)

𝑥′(𝑡′ = 0, Ԧ𝑟′)



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′

Using 𝐾 −𝑡, Ԧ𝑟′ ; 0, Ԧ𝑟



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′

Using 𝐾 −𝑡, Ԧ𝑟′ ; 0, Ԧ𝑟

advanced propagator



Using 𝐾 𝑡, Ԧ𝑟 ; 0, Ԧ𝑟′

Using 𝐾 −𝑡, Ԧ𝑟′ ; 0, Ԧ𝑟

advanced propagator



Therefore, these two pictures are equivalent.



Then, why not generalize to many particles, e.g., instantons?



The Fourth Way:

Hawking radiation as instantons



𝒇 𝒊 = 𝒊→𝒇𝒋𝑫𝒈𝑫𝝓𝒆−𝑺𝑬׬



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥



𝒇 𝒊 ≅ σ
𝒊→𝒇𝒋 𝒆

−𝑺𝑬
𝐨𝐧−𝐬𝐡𝐞𝐥𝐥

One can construct instantons for
an arbitrary amount of energy
if 𝛿𝑀 ≤ 𝑀.



For a free scalar field, the Euclidean action only depends on the boundary terms (at 

infinity and at horizon).

𝑆𝐸 = −න
𝜕ℳ

𝐾 − 𝐾0
8𝜋

+ℎ𝑑3𝑥 + (contribution at horizon)

The boundary at infinity should be subtracted by the background term. The contribution 

at horizon is the areal entropy differences (Gregory, Moss and Withers, 2014).

2𝐵 =
𝒜𝑖 −𝒜𝑓

4



This result is repeated by using the Hamiltonian approach of Fischler-Morgan-Polchinski

(Chen, Hu and DY, 2015)

𝑖Σ = −න
0

∞

𝑑𝑟 𝑅 𝐿2𝑓 𝑅 − 𝑅′2 − 𝑅𝑅′ cos−1
𝑅′

𝐿 𝑓(𝑅)

𝑃 ≅
Ψ𝑓
Ψ𝑖

2

= 𝑒2𝑖(Σ𝑓−Σ𝑖)

න
0

𝑟1−𝜖

𝑑𝑟(… ) + න
𝑟1−𝜖

𝑟1+𝜖

𝑑𝑟(… ) + න
𝑟1+𝜖

𝑟2−𝜖

𝑑𝑟(… ) + න
𝑟2−𝜖

𝑟2+𝜖

𝑑𝑟(… ) + න
𝑟2+𝜖

∞

𝑑𝑟(… )

− log𝑃 ≅ 2𝐵 =
𝒜𝑖 −𝒜𝑓

4



Therefore, finally we can recover Hawking’s result.

Γ ∝ 𝑒−2𝐵 ≃ 𝑒−8𝜋𝑀𝛿𝑀 if  δ𝑀 ≪ 𝑀



Therefore, finally we can recover Hawking’s result.

We further observe that there exist plenty of instantons with 𝛿𝑀/𝑀 ≤ 1.

Γ ∝ 𝑒−2𝐵 ≃ 𝑒−8𝜋𝑀𝛿𝑀 if  δ𝑀 ≪ 𝑀



Dual interpretation

pair-creation vs. instanton tunneling



Can this be extended

not only perturbative regime (Hawking radiation)

but also non-perturbative processes?



We can study thin-shell tunneling

as an example of the non-perturbative process.





junction condition of the shell



We interpret a negative-tension shell falls in

and the entropy of the black hole decreases.

The Euclidean action difference becomes

Δ𝑆𝐸 =
Δ𝐹

𝑇
=
Δ 𝐸 − 𝑆𝑇

𝑇
= −Δ𝑆 = −

ΔA

4

where the energy is conserved.



We interpret a negative-tension shell falls in

and the entropy of the black hole decreases.

The Euclidean action difference becomes

Δ𝑆𝐸 =
Δ𝐹

𝑇
=
Δ 𝐸 − 𝑆𝑇

𝑇
= −Δ𝑆 = −

ΔA

4

where the energy is conserved.

In addition, there exist contributions 

from the shell-dynamics, which has the 

following form.



On the other hand, in the instanton picture,

instanton lives on the Euclidean manifold.

The contribution comes from the cusp

of the Euclidean manifold

Δ𝑆𝐸 = −
ΔA

4

after a proper regularization.

Due to the symmetry, they have the same 

shell-integration term.



Dual interpretation

pair-creation vs. instanton tunneling



The second picture is rather mathematically complete,

while the first picture provides

easier conceptual interpretations.



If there exists a non-perturbative process,

a firewall can be naked (if exists).

(Chen, Ong, Page, Sasaki and DY, 2016)



If there exists a non-perturbative process,

an Einstein-Rosen bridge can be traversable

which is inconsistent to the ER=EPR philosophy.

(Chen, Wu and DY, 2017)



Thank you very much


