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Three roads to Hawking radiation




1. Bogoliubov transformation




Commun. math. Phys. 43, 199—220 (1975)
(© by Springer-Verlag 1975

Particle Creation by Black Holes

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, England

Received April 12, 1975

Abstract. In the classical theory black holes can only absorb and not emit particles. However it
1s shown that quantum mechanical effects cause black holes to create and emit particles as if they
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hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual
disappearance: any primordial black hole of mass less than about 10'* g would have evaporated by
now. Although these quantum effects violate the classical law that the area of the event horizon of a
black hole cannot decrease, there remains a Generalized Second Law: S-+21 4 never decreases where S
is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons.
This shows that gravitational collapse converts the baryons and leptons in the collapsing body into
entropy. It is tempting to speculate that this might be the reason why the Universe contains so much

entropy per baryon.



1. Bogoliubov transtormation

Unitary transformation between operators:

from
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to
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so to speak,

pi = Z[“i]’fj + Bijfj]
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1. Bogoliubov transtormation

Even though we start from the vacuum

a,|0)=0

by using

we obtain

(1) = (Bbi) = D 1B url?

This may be non—zero.




1. Bogoliubov transtormation

We obtain the relation

|aww’|2 = ean/KIwa,|2

In addition, there is a normalization condition

2(|aww'|2 - |wa’|2) =1
wl

In conclusion,




2. Renormalized energy—momentum tensor




2. Renormalized energy momentum tensor

We want to solve the equation
Gy = 8m(T)

where the energy—momentum tensor has ambiguities.

Moreover, the expectation values are divergent in general:

(Pp(x)p(x))



2. Renormalized energy momentum tensor

Birrell and Davies, “Quantum fields in curved space”, 1982
In order to resolve these problems, renormalization techniques were developed.

Step 1. Obtain finite two—point correlation function, e.g., by the point splitting method:
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-+ (finite terms)
X —X

lim (¢ (x)p(x")) =
Step 2. Using the two—point correlation function, we obtain the energy—momentum tensor.
(TL) = (G’ — 58, bath* = 3b,"))

G(xx)=i(d(x)p(x"))
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Howard and Candelas, 1984



2. Renormalized energy momentum tensor

Davies, Fulling and Unruh, 1976

For two—dimensional cases, we can obtain the simpler form:

(Ty) = ﬂ( (@ouy —2a%)  — (@@yy - a,ua,v)>
v aZ - (aa,uv - a,ua,v) (aa,vv - 2“,%7)

where ds? = —a?*dudv.

For dilaton black holes, there can be a back—reaction even for 2D: CGHS model.

Callan, Giddings, Harvey and Strominger, 1991



2. Renormalized energy momentum tensor
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3. Tunneling picture
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The Feynman path-integral method is applied to the quantum mechanics of a scalar particle moving in the
background geometry of a Schwarzschild black hole. The amplitude for the black hole to emit a scalar particle
in a particular mode is expressed as a sum over paths connecting the future singularity and infinity. By
analytic continuation in the complexified Schwarzschild space this amplitude is related to that for a particle to
propagate from the past singularity to infinity and hence by time reversal to the amplitude for the black hole
to absorb a particle in the same mode. The form of the connection between the emission and absorption
probabilities shows that a Schwarzschild black hole will emit scalar particles with a thermal spectrum
characterized by a temperature which is related to its mass, M, by T = /i ¢ /87 GMk. Thereby a conceptually
simple derivation of black-hole radiance is obtained. The extension of this result to other spin fields and other
black-hole geometries is discussed.



3. Tunneling picture

Hartle and Hawking, 1976

Hartle and Hawking considered particle tunneling from inside to outside the horizon.




3. Tunneling picture

Hartle and Hawking, 1976

Using the analytic continuation, one can calculate the emission rate.

2nE
(probability to emit a particle with energy E) =@ « X (probability to absorb a particle with Energy E)



3. Tunneling picture

Parikh and Wilczek, 2000

One can also calculate a tunneling between two null geodesics.




Why do we have to Wick—rotate

inside the horizon only?

Let’s revisit the Hartle-Hawking's path integral.




We calculate the transition amplitude

+00
S 7Y = j dt e=i9t K (0,7 £, 7),

where K(0,7';t,7) is the propagator with a regulator:

[ 1
42 s(x,x') +ie’

K(,7";¢t,7) = —



Since the propagator satisfies the relation
K(,7;t,7) = K(t,7;0,7") = K(—t,#;0,7)

we may have a freedom to choose one of them.



Using K(t,7;0,7")
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Using K(t,7;0,7")
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Using K(t,7;0,7")
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Using K (t,7;0,7")
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Using K (—t,7';0,7)

|

Imt
S:IITVIA : x

4nM

» Ret

-4nM

-8nM ; |




Using K (t,7;0,7")
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Using K (t,7;0,7")
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Therefore, these two pictures are equivalent.



.

Then, why not generalize to many particles, e.g., instantons?



The Fourth Way:

Hawking radiation as instantons
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on—shell

(fli) = Zi—)ff e %k
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on—shell

(fli) = Zi—)f]' e %k
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on—shell

(fli) = Zi—)f]' e %k
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on—shell

(fli) = Zi—)f]' e %k
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on—shell
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: _gon—shell H=oMx | dow]A,Ze=er
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One can construct instantons for
an arbitrary amount of energy
- if 6M < M.
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For a free scalar field, the Euclidean action only depends on the boundary terms (at

infinity and at horizon).

K - K
Sp = —f ey 0 J+hd3x + (contribution at horizon)
oM

The boundary at infinity should be subtracted by the background term. The contribution
at horizon is the areal entropy differences (Gregory, Moss and Withers, 2014).

A; — Ay
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This result is repeated by using the Hamiltonian approach of Fischler—Morgan—Polchinski
(Chen, Hu and DY, 2015)

iZ=—j dr
0

Lyf(R)

RVL2f(R) — R’ — RR’ cos‘1< R )

2
& — eZi(Zf—Zi)

P =
“Pi

ri—€ rit+e Try—€ ry+e ©
f dr(...) +f dr(...) +J dr(...) +f dr(...) +f dr(...)
0 r1—€ r1+e To—€ Tro+€
r=( Rofri} fu Rar:) =

A; — Ay
—logP = 2B =







Therefore, finally we can recover Hawking s result.
[ e 2B ~ g=87MOM if §M < M

We further observe that there exist plenty of instantons with 6M/M < 1.



Dual interpretation

pair—creation vs. instanton tunneling

pair-creation tunneling




Can this be extended

not only perturbative regime (Hawking radiation)

but also non—perturbative processes?

pair-creation tunneling




We can study thin—shell tunneling

as an example of the non—perturbative process.




. on—shell
i} I:hz}_]lt (DDUt }'l -1ni| _ /Dgﬂy’D(ﬁ E_SE[gpvr¢] ~ Z E_SE

on—shell

Sk / dz*\/g [—R — = (Vo) ] fa N * ;;C" Vhdz?



/] [hzgt qDDth j'l -i11i| _ /DQHHZD(;II) E_SE[gﬁv@] ~ Z E_g%n—:—:hcll

on—shell

Sk / dz*\/g [—R -5 (V¢) ] fa N * ;;C" Vhdz?
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pair-creation

We interpret a negative—tension shell falls in

and the entropy of the black hole decreases.

The Euclidean action difference becomes

_AF  A(E-ST) AA

SE_T T 4

where the energy is conserved.



We interpret a negative—tension shell falls in

pair-creation

and the entropy of the black hole decreases.

The Euclidean action difference becomes

_AF  A(E-ST) AA

Sp = T T 4

where the energy is conserved.

In addition, there exist contributions
from the shell-dynamics, which has the

following form.

T2
(shell integration) = 2 / drr
J 1

CDS_] (f—|— + f— _ 16?T252?‘2)
| 2,/ f+ -




tunneling On the other hand, in the instanton picture,

instanton lives on the Euclidean manifold.

The contribution comes from the cusp

of the Euclidean manifold

A — AA
E— g

after a proper regularization.

Due to the symmetry, they have the same

shell-integration term.
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Dual interpretation

pair—creation vs. instanton tunneling

pair-creation tunneling




The second picture is rather mathematically complete,

while the first picture provides

easier conceptual interpretations.

pair-creation tunneling




If there exists a non—perturbative process,

a firewall can be naked (if exists).

(Chen, Ong, Page, Sasaki and DY, 2016)



If there exists a non—perturbative process,

an Einstein—Rosen bridge can be traversable

which is inconsistent to the ER=EPR philosophy.
(Chen, Wu and DY, 2017)



Thank you very much



