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Introduction

Classical mechanics is Galilean invariant, i.e, time parameter t and position
coordinate q(t) are explicitly functions of each other.

Non existence of a locally Lorentz invariant quantum theory with single
particle interpretation.

In GR, we have difficulty to interpret time as we did in classical mechanics.

GR is locally Lorentz invariant (time t is just a coordinate and is no longer
considered as a parameter).

In the language of the variational calculus, the analogue to coordinate g(?) is
the Riemannian metric g, (x),,a, b = 0...3 is a function of the all
coordinates x¢ = (£, x%),A = 1,..3.



Introduction

« That makes quantum gravity difficult to build. Basically we have several QGs,
e Semiclassical quantum gravity (Qquantum fields on classical backgrounds)

* Loop Quantum gravity

e String Theory

 Non commutativity as a way to address quantum effects in gravity
(singularities,..)

« Lorentz symmetry breaking (Lifshitz theories(stochastically renormalizable),..)

* It seems we have the problem of “disappearance of time”(Timeless quantum
gravity)



Introduction
we are still looking for a fully covariant canonical quantum theory for gravity!

My observations initiated when | studied GR as a classical gauge theory [M.
Carmeli, "Claasical fields: General Relativity and Gauge Theory" (1982)]

* During studying non standard classical dynamical systems | found a class of
Lagrangian models with second order time derivative of the position L(q, g, §).

* A wide class of such models reduce to the position dependence mass (PDM)
models[1507.05217,1605.06829, 1710.02135].

e |t is obviously interesting to show that whether GR reduces to such models!.

* The classical Einstein-Hilbert (EH) Lagrangian reduces to the position-
dependent -mass (PDM) model up to a boundary term.



Introduction
Analogy between classical mechanics and GR

* GR espects gauge transformations (any type of arbitrary change in the
coordinates, from one frame to the other x¢ — X9

* We can rewrite EH Lagrangian in terms of the metric, first and second
derivatives of it. It looks like a classical system in the form of L(q, g, G).

« In this formal analogy, the classical acceleration term ¢ in the classical models
under study is now replaced with the second derivative for metric i.e,d,1 4.

* we will need to define a super mass tensor as a function of the metric instead
of the common variable mass function m(g(t)) in classical mechanic.



Introduction
Analogy between classical mechanics and GR

Theory Position Velocity Acceleration Mass
Classical ( )
Mechanics with . q(t Scalar mass
m(q(1))

GR gab ddgab aeadgab ppebideh




Introduction

The notation for Einstein-Hilbert action is:Szy; = Jd%ffGR

HeregGR: gGR(lglaalgl’g’g’ag’ag)

Notations:g = g,

1 1
g=g"|g| =det(g,,) = @)’ 5? 0g=1,,08 =10, = 8pu™t &lub — &pal-

We adopt metricity condition Vagbc =|g |_1/200( | g |1/2gbc) =|g |_1/2 | g |1/2§) = (0 along
0.2=—-5.0g.%.

| showed that GR Lagrangian reduces to a PDM fully classical system with a super mass tensor of
rank six.

| built a consistent super phase space as well as a set of Poisson brackets.

| show that gravitational field equations reduced top a set of first order Hamilton's equations.



Super Mass Tensor for GR as PDM classical system
Equivalent form for Lagrangian of the GR

One can eliminate the second derivative term 0,8, simply by integrating by part and using the metricity
condition Vagbc = 0, by taking into the account all the above requirements a possible:

1 1 1
ZLer = EV K4 <g 8" T 11i0"8en + 8”8 T 11a0'ger + 58 878" T L pea — Eg “ghlg tertlarbed>and we

have Spy = Jd4x3GR +B.T

By B.T we mean boundary term defined as:

_ BDy AL \/ BDpAL
B.T= [ V | hAB | h""h 1—‘BLA |xD=constant + [ | hAB | h”"h 1—‘BLD |xA=c0nstant
ol oM

We can r? express the above GR Lagrangian in ourlconvenient notationsi as:
LR =3 lg| <§.ag.§.5g+§.§.ag.5g+5§.§.§.dg.ag—Eg.dg.§.§.6g>

Note that by dot” we mean tensor product(we adopt Einstein summation rule).



Super Mass Tensor for GR as PDM classical system

« From the above representation we can realize { g, g} as two fields , in analogy
to the Dirac Lagrangian where the fermionic pairs y, y appeared .

 The difference here is due to the fact that the pair of objects {g, 2} depend

on each other as we know g . g = 0, the Kronecker delta, however in the
Dirac Lagrangian the norm s # 1.

 In our program we won’t use this duality and we will focus on the coordinates
representation of the GR Lagrangian.

e If we substitute the definition of Gamma terms and combine the theory, we
obtain the final form for the Lagrangian as a PDM system for coordinate g

1
ZGr= > | g | M®Phg g,.0,8,,



Super Mass Tensor for GR as PDM classical system

Definition of super mass tensor:
_ 1
|g|1/2M — |g|1/2MCL1b1l1d161h1 — Zgal gbd gte X
(531 521 521 + 521 516;1 521 _ 521 521 531) (5&11 5lh1 5t€1 . 531 5ldl 5t€1 + 521 5lh1 5;11)

1
__gal gbd gte (521 (521 521 + 521 5;1 5(131 o 521 5&1 531) (531 5lh1 5?1 . 531 5ld1 5231 + 521 6lh1 551)

4
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Super Mass Tensor for GR as PDM classical system

Having the Lagrangian of GR, one can define a canonical pair of

position conjugate momentum (g, p) and construct a phase
space.



Super phase space

* Defining the super conjugate momentum tensor :

0% V8
rst _ — < Mrstdeh ad g + Mablrst aa gbl)
00,8y 2

Note that for the mass tensor M"'4"g g . = MUty o

P

A possible classical Hamiltonian: #Z';x = My L p™SIM L p Y

2/ 1gl

A possible Poisson's bracket {F, G} p padopted to this system is:
i 0, o OF oG  oF dG
{ (gmnap )’ (gmnap )}P_B - Z (agab 0p’"5t _ aprst agab)

In our notation it simplifies to the following expression

oF oG  0OF oG
{F(g,DP),G(g.D)}pp= Z <ag op B ap 0g >

For our super phase coordinates (g, p"™), | postulate that{g,,,p"'} p g = c¢'0";




Super phase space

Here 6} is the generalized Kronecker defined as ¢! = 2!5[56152].

In the above Poisson's bracket, with structure constants ¢’ provide a
classical minimal volume for super phase space (zero for Poisson's bracket
same objects ).

We have now full algebraic structures in the super phase space and canonical
Hamiltonian.

We can write down Hamilton's equations as first order reductions of the
Euler-Lagrange equations derived from the Lagrangian .

| will show that how Einstein equation reduces to a type of covariant Hamilton
equations.



Reduction of the Einstein Field Equations (EFE) to Hamilton's equation via
covariant Hamiltonian

0 ¢
apabl |

. The set of Hamilton's equations derived from the Hamiltoniand,g,; = {gy # crlp.p =

0gp;

* We explicitly can write this pair of Hamilton's equation given as follows:
— 'b'l'deh t t
\/E aagbl = M* ¢ Mrsta/b’l’Muvwdeh(6561‘;6[”)prs + 555551puvw>
2 1317/ 8M
__aapabl — M bl dehpTStMrsta’b’l’puvw uvwdeh
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* | believe that one can integrate this system as a general non autonomous dynamical system .



Quantization of GR

* I'm going to define appropriate forms for Dirac brackets:

= = i R 2| = 75

08,

st

. The classical phase space spanned by the <gab,p”t)one has more degrees of

freedom (dof), basically is 10°( = 10 x 10*) dimensional for a Riemannian manifold.

« The Dirac constant 7 is proportional to the minimum volume of the phase space V|,

defined as @, = JD(gab,prSt),D(gab,prSt) is a covariant volume element.

e The super mass tensor M = M abldehig o homogeneous (order 6) of the metric tensor



Quantization of GR

e Using the formalism of quantlzatlon for PDM systems the canonical quantized

L 1/2 0
Hamiltonian for GR |S:?/GR(gab, ) =-3 A — [fmmvwhua ]

vw
here the auxiliary, scaled super mass tensor ..., IS

— —1/4 3 gabldeh
ﬁ"stuvw — |g | M M tablM vwdeh*

* It is adequate to write the quantum Hamiltonian in the followin ? closed form:

AMNPY — 1 —12 x5 1/2,\ —12 37 =
H or(ap #™) = = | 18|72 MMM | &||g | MMM | 7

where 7 is contravariant component of the super momentum r , etc.

* The above quantization of Hamiltonian is covariant since we didn't specify

time f from the other spatial coordinates x4,



Quantization of GR

* The model is considered as a timeless model, i.e, there is no first order time

0

derivative in the final wave equation like F :
{

* The associated functional second order wave equation which is fully locally
Lorentz mvanant as well as general covariant:

] A

08

vw

» In our suggested functional wave equation for ¥(g,,), we end up by the
covariant (no first order derivative) of the functional Hilbert space.

 This model is a subclass of the timeless models of QG



Quantum cosmology

* We consider flat, Friedmann-Lemaitre-Robertson-Walker (FLRW) model with
Lorentzian metric g, = diag(1, — a(t)2;) where X5 is the unit metric tensor for

flat space, in coordinates x“ = (¢, x, y, 2) .

* The non vanishing elements of the super mass tensor:
MePleh = — 1207250505565 B, L, E,H = 1,2,3

1/2
a
. The auxiliary scaled super mass tensor f, ..., = — 2 0,,00,00vwOsT
« The functional wave equation reduces to the hypersurfaces 2; coordinates
X" = (., 2):
3h 12 az‘P(gAB)

= EY(g,4p)
3 085508vv ?



Quantum cosmology

* it reduces simply to the foSI}SWing ordinary differential equation
3
a¥’(a) — WYi(a) — Ya) =0

2Ea

303

|t can be reduce to a standard second order differential equation for wave function

32Ea'? 3
Y(a) = Vap(a), ¢"(@) — ( T )@ =0

* There are exact solutions for asymptotic regimes:
164/ 2F
ifa — 0, exp[—a5/4]ifa — 00.

5v/3h

Cl3/2

3/2 16y 2E 5/4
By suggesting ¢(a) = {(a)a eXp[Ta ] and {(a) will come as a
) 5v/3h
transcendental (hypergeometric) function.



Quantum cosmology

Complete wave function:

_2 8\/5645/4_'_3 16 ka5/4 16 ka5/4
325545, 15< Z ) [Scll“ (%) 1451[ 5; ] + 32\5/§c2F (%) Ig[ 5; ]J
164/ 2E
. ‘I’(a) — a5/2 exp[ a5/4]
5
5\/§h 64\/361

The eigenvalue E (positive, negative or zero ) can be discrete as well as
continuous (bound states for E < 0).

« Remarkable is for vanishing energy state,E = 0
¥(a) = N, + Na>.



Note about ADM decomposition formalism and reduced phase space

* In our formalism If one adopt the ADM decomposition of the metric g, as
follows
ds* = g, dxdx? = hyzdx*dxB + 2N,dx dx" + (= N* + h*BN,Ny)(dx")
here x is time, A, B = 1,23 refer to the spatial coordinates and /14 is
spatial metric, we recall the super conjugate momentum

e VB
) )

= - ( MOsHehy o 4 pgeblOsty 8191)
Building t‘%e Hamiltonian in a standard format as:

1
ADM __ abldeh st
H — 5 \/ﬁM Mogsapi® Movwdeh”
8

e Again we can recover ADM Hamiltonian!




Final remarks

The canonical covariant qunatization which | proposed here is a consistent theory.

The GR action in a suitable form the Lagrangian reduced to a purely kinetic theory
with position dependence mass term.

With such a simple quadratic Lagrangian, | defined a conjugate momentum
corresponding to the metric tensor.

| developed a classical Hamiltonian using the metric and its conjugate
momentum.

One can write classical Hamilton's equations for metric and momentum are
analogous to the second order nonlinear Einstein field equations.

We replaced Poisson's brackets with Moyal(Dirac) and we defined a quantum
Hamiltoninan for GR.



Final remarks

| notice here that even if we didn't remove second derivative terms using
integration part by part, it was possible to define a second conjugate

abcd _ GR
a(aaabg cd)

. If we impose a Bianchi identity between (gab,p”

momentum: r

2 r“bc‘l), it is possible to fix

this new momentum in terms of the other one and the metric.

« with the Bianchi identity, . .
{8 AP, 8"y p gy p g + (D AP g p Y pp + (" {8 DY st pp =0

» A suitable Legendre transformation from the GR Lagrangian
4 GR =P rStargst +r ade(aaabgcd) -7 GR

* One obtains a standard Hamiltoninan without this new higher order momentum.



THANK YOU'!
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