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Introduction
• Classical mechanics is Galilean invariant, i.e, time parameter  t and position 

coordinate q(t) are explicitly functions of each other.


• Non existence of a locally Lorentz invariant quantum theory with single 
particle interpretation.


• In GR, we have difficulty to interpret time as we did in classical mechanics.


• GR is locally Lorentz invariant (time t  is just a coordinate and  is no longer 
considered as a parameter).


• In the language of the variational calculus, the analogue to  coordinate  is  
the Riemannian metric  is a function of the all 
coordinates .

q(t)
gab(xc), , a, b = 0...3

xc = (t, xA), A = 1,..3



Introduction

• That makes quantum gravity difficult to build. Basically we have several QGs,


• Semiclassical quantum gravity (quantum fields on classical backgrounds)


• Loop Quantum gravity


• String Theory 


• Non commutativity as a way to address quantum effects in gravity 
(singularities,..)


•  Lorentz symmetry breaking (Lifshitz theories(stochastically renormalizable),..)


• It seems we have the problem of “disappearance of time”(Timeless quantum 
gravity)



Introduction
we are still looking for a fully covariant canonical quantum theory for gravity!

•  My observations initiated when I studied  GR as a classical gauge theory [M. 
Carmeli, "Claasical fields: General Relativity and Gauge Theory" (1982)]


• During studying non standard classical dynamical systems I found a class of 
Lagrangian models with second order time derivative of the position .


• A wide class of such models reduce to the position dependence mass (PDM) 
models[1507.05217,1605.06829, 1710.02135].


• It is obviously interesting to show that whether GR reduces to such models!.


• The classical Einstein-Hilbert (EH) Lagrangian reduces to the position-
dependent -mass (PDM) model up to a boundary term.

L(q, ·q, ··q)



Introduction 
Analogy between classical mechanics and GR

• GR espects gauge transformations (any type of arbitrary change in the  
coordinates,  from one frame to the other  )


• We can rewrite EH Lagrangian in terms of the metric, first and second 
derivatives of it. It looks like a classical system in the form of .


• In this formal analogy, the  classical acceleration term  in the  classical models 
under study is now replaced with  the second derivative for metric i.e, . 


• we will need to define a super mass tensor as a function of the metric instead 
of the common variable mass function    in classical mechanic.  

xa → x̃a

L(q, ·q, ··q)
··q

∂eΓdab

m(q(t))



Introduction 
Analogy between classical mechanics and GR

Theory Position Velocity Acceleration Mass 

Classical 
Mechanics with 

PDM
Scalar mass 

GR

q(t) ·q(t) ··q(t)
m(q(t))

gab ∂dgab Mabldeh∂e∂dgab



Introduction 
• The notation for Einstein-Hilbert action is: 


• Here 


• Notations: , 




• We adopt metricity condition  along 
.


• I showed that GR Lagrangian reduces to a PDM fully classical system with a super mass tensor of 
rank six. 


• I built a consistent super phase space as well as a set of Poisson brackets.


• I show that gravitational field equations reduced top a set of first order Hamilton's equations.

SEH = ∫ d4xℒGR

ℒGR = ℒGR( |g | , ∂ |g | , g, g, ∂g, ∂g)

g ≡ gab

g ≡ gab, |g | ≡ det(gab) =
1

det(g)
,

1
2

g . ∂g ≡ Γa
bc, ∂g = Γbla ≡ gbl,a + gla,b − gba,l .

∇agbc = |g |−1/2 ∂a( |g |1/2 gbc) ≡ |g |−1/2 ∂( |g |1/2 g) = 0
∂ . g = − g . ∂g . g



Super Mass Tensor for GR as PDM classical system
Equivalent form for Lagrangian of the GR
• One can eliminate the second derivative term  simply by integrating  by part and using the metricity 

condition , by taking into the account all the above requirements a possible:

and we 

have 


• By B.T we mean  boundary term defined as: 




• We can re express the above GR Lagrangian in our convenient notations as:




• Note that by   dot” we mean  tensor product(we adopt Einstein summation rule).

∂degab
∇agbc = 0

ℒGR =
1
2

|g | (galgbeΓbla∂hgeh + gbegdhΓbld∂lgeh +
1
2

galgbdgteΓtldΓbea −
1
2

galgbdgteΓtlaΓbed)
SEH = ∫ d4xℒGR + B . T

B . T = ∫∂ℳ
|hAB | hBDhALΓBLA |xD=constant + ∫∂ℳ

|hAB | hBDhALΓBLD |xA=constant

ℒGR =
1
2

|g | (g . ∂g . g . ∂g + g . g . ∂g . ∂g +
1
2

g . g . g . ∂g . ∂g −
1
2

g . ∂g . g . g . ∂g)



Super Mass Tensor for GR as PDM classical system
• From the above representation we can realize  as two fields , in analogy 

to the Dirac Lagrangian where the fermionic pairs   appeared . 


• The difference here is due to the fact that  the pair of objects  depend 
on each other as we know  , the Kronecker delta, however in the 
Dirac Lagrangian the norm .


• In our program we won’t use this duality and we will focus on the coordinates 
representation of the GR Lagrangian.


• If we substitute the definition of  Gamma terms and combine the theory, we 
obtain the final form for the Lagrangian as a PDM system for coordinate :

{g, g}
ψ, ψ̄

{g, g}
g . g = δ
ψ ·ψ ≠ I

gab

ℒGR =
1
2

|g | Mabldeh∂agbl∂dgeh



Super Mass Tensor for GR as PDM classical system
Definition of super mass tensor:

3

convenient notations as

LGR =
1

2

p
|g|

⇣
g.@g.g.@g+g.g.@g.@g+

1

2
g.g.g.@g.@g�

1

2
g.@g.g.g.@g

⌘
.

(7)
Note that by ”.” we mean tensor product(we adopt

Einstein summation rule). From the above representa-
tion we can realize {g, g} as two fields , in analogy to
the Dirac Lagrangian where the fermionic pairs  ,  ̄ ap-
peared . The di↵erence here is due to the fact that the
pair of objects g, g depend on each other as we know
g.g = �, the Kronecker delta, however in the Dirac La-
grangian the norm   ̇ 6= I. In our program we wont use
this duality and we will focus on the coordinates repre-
sentation of the GR Lagrangian, i.e, eq.(5) . If we sub-
stitute the definition of Gamma terms and combine the
theory, we obtain the final form for the Lagrangian as a

PDM system for coordinate gab(or as a tensor version for
k-essence [12]):

LGR =
1

2

p
|g|M

abldeh
@agbl@dgeh. (8)

here M
abldeh = |g|

�1/2 @
2LGR

@(@agbl)@(@dgeh)
is defined as su-

per mass tensor. An alternative form for (8) is LGR =
p

|g|
2 M@g@g. It is equivalent to the classical Lagrangian

of PDM systems L = 1
2M(q)q̇2 for one dimensional, po-

sition dependent mechanical system. As we expected in
GR, the mass term transformed to a higher order (here
rank six) tensor. The explicit form for the super mass
tensor is expressed as following:

|g|
1/2

M = |g|
1/2

M
a1b1l1d1e1h1 =

1

4
g
al
g
bd

g
te

⇥ (9)
⇣
�
a1
a
�
b1
b
�
l1
e
+ �

b1
a
�
a1
b
�
l1
e
� �

l1
a
�
b1
b
�
a1
e

⌘⇣
�
d1
d
�
h1
l
�
e1
t

� �
h1
d
�
d1
l
�
e1
t

+ �
e1
d
�
h1
l
�
d1
t

⌘

�
1

4
g
al
g
bd

g
te

⇣
�
a1
b
�
b1
d
�
l1
e
+ �

b1
b
�
a1
d
�
l1
e
� �

b1
b
�
l1
d
�
a1
e

⌘⇣
�
d1
a
�
h1
l
�
e1
t

� �
h1
a
�
d1
l
�
e1
t

+ �
e1
a
�
h1
l
�
d1
t

⌘

+
1

4
g
al
g
bd
g
te

⇣
�
d1
a
�
e1
b
�
h1
e

+ �
e1
a
�
d1
b
�
h1
e

� �
h1
a
�
e1
b
�
d1
e

⌘⇣
�
a1
d
�
l1
l
�
b1
t

� �
l1
d
�
a1
l
�
b1
t

+ �
b1
d
�
l1
l
�
a1
t

⌘
)

�
1

4
g
al
g
bd
g
te

⇣
�
d1
b
�
e1
d
�
h1
e

+ �
e1
b
�
d1
d
�
h1
e

� �
e1
b
�
h1
d
�
d1
e

⌘⇣
�
a1
a
�
l1
l
�
b1
t

� �
l1
a
�
a1
l
�
b1
t

+ �
b1
a
�
l1
l
�
a1
t

⌘
)

+g
al
�
d1
a

g
be
g
dh
�
e1
e
�
h1
h

⇣
�
b1
b
�
a1
d
�
l1
l
+ �

a1
b
�
l1
d
�
b1
l

� �
b1
b
�
l1
d
�
a1
l

⌘

+g
al
g
be
g
dh
�
d1
d
�
e1
e
�
h1
h

⇣
�
a1
a
�
b1
b
�
l1
l
+ �

l1
a
�
a1
b
�
b1
l

� �
l1
a
�
b1
b
�
a1
l

⌘

+g
al
�
a1
a

g
be
g
dh
�
b1
e
�
l1
h

⇣
�
e1
b
�
d1
d
�
h1
l

+ �
d1
b
�
h1
d
�
e1
l

� �
e1
b
�
h1
d
�
d1
l

⌘

+g
al
g
be
g
dh
�
a1
d
�
b1
e
�
l1
h

⇣
�
d1
a
�
e1
b
�
h1
l

+ �
h1
a
�
d1
b
�
e1
l

� �
h1
a
�
e1
b
�
d1
l

⌘
.

Having the Lagrangian of GR given in eq. (8), one can
define a canonical pair of position conjugate momentum
(g, p) and construct a phase space. This is what we are
going to do in next section.

III. SUPER PHASE SPACE

The phase space description of the classical model pre-
sented in eq.(8) is very straightforwardly done, by defin-
ing the super conjugate momentum tensor is

p
rst =

@LGR

@(@rgst)
=

p
g

2

⇣
M

rstdeh
@dgeh +M

ablrst
@agbl

⌘
.(10)

Note that the mass tensor M
rstdeh

@dgeh =
M

ablrst
@agbl. A possible classical Hamiltonian will

be

HGR =
1

2
p
|g|

M
abldeh

Mrstablp
rst

Muvwdehp
uvw

. (11)

A possible Poisson’s bracket {F,G}P.B adopted to this
system is:

{F (gmn, p
stu), G(gmn, p

stu)}P.B =
X⇣

@F

@gab

@G

@prst
�

@F

@prst

@G

@gab

⌘
..(12)

or in our notation it simplifies to the following expression

{F (g, p), G(g, p)}P.B =
X⇣

@F

@g

@G

@p
�
@F

@p

@G

@g

⌘
. (13)

and specifically for our super phase coordinates (gab, prst)
, I I postulate that

{gab, p
rst

}P.B = c
r
�
rs

ab
. (14)



Super Mass Tensor for GR as PDM classical system
Having the Lagrangian of GR, one can define a canonical pair of 
position conjugate momentum   and construct a phase 
space.

(g, p)



Super phase space

• Defining the super conjugate momentum tensor :




• Note that for the mass tensor .


•  A possible classical Hamiltonian: 


• A possible Poisson's bracket adopted to this system is:




• In our notation it simplifies to the following expression




• For our super phase coordinates  , I postulate that

prst =
∂ℒGR

∂(∂rgst)
=

g

2 (Mrstdeh∂dgeh + Mablrst∂agbl)
Mrstdeh∂dgeh = Mablrst∂agbl

ℋGR =
1

2 |g |
MabldehMrstablprstMuvwdehpuvw

{F, G}P.B

{F(gmn, pstu), G(gmn, pstu)}P.B = ∑ ( ∂F
∂gab

∂G
∂prst

−
∂F

∂prst

∂G
∂gab

)

{F(g, p), G(g, p)}P.B = ∑ (∂F
∂g

∂G
∂p

−
∂F
∂p

∂G
∂g )

(gab, prst) {gab, prst}P.B = crδrs
ab



Super phase space
• Here   is the generalized Kronecker  defined as	 .


• In the above Poisson's bracket, with  structure constants    provide a 
classical minimal volume for super phase space (zero for Poisson's bracket 
same objects ).


• We have now full algebraic structures in the super phase space and canonical 
Hamiltonian.


•  We can write down Hamilton's equations as first order reductions of the 
Euler-Lagrange equations derived from the Lagrangian .


• I will show that how Einstein equation reduces to a type of covariant Hamilton 
equations.

δrst
ab δrst

ab = 2!δs
[aδ

t
b]

cr



Reduction of the Einstein Field Equations (EFE) to Hamilton's equation via 
covariant Hamiltonian

• The set of  Hamilton's equations  derived from the Hamiltonian , 




• We explicitly can write this pair of Hamilton's equation given as follows:




• I believe that one can integrate this system as a general non autonomous dynamical system .

∂agbl = {gbl, ℋGR}P.B =
∂ℋGR

∂pabl

∂apabl = {pabl, ℋGR}P.B = −
∂ℋGR

∂gbl

2
g

∂agbl = Ma′ b′ l′ dehMrsta′ b′ l′ 
Muvwdeh(δu

aδv
bδw

l prst + δr
aδs

bδt
l puvw)

4

Here �
rst

ab
is the generalized Kronecker defined as [13]

�
rst

ab
= 2!�s[a�

t

b] (15)

In the above Poisson’s bracket, with structure constants
c
r provide a classical minimal volume for super phase
space (zero for Poisson’s bracket same objects ). We have
now full algebraic structures in the super phase space
and canonical Hamiltonian. As a standard procedure,
we can write down Hamilton’s equations as first order
reductions of the Euler-Lagrange equations derived from
the Lagrangian given in eq. (8)(Einstein field equations).
This is one of the main results of this letter and I will
address it in the next short section.

A. Reduction of the Einstein Field Equations
(EFE) to Hamilton’s equation via covariant

Hamiltonian

The set of Hamilton’s equations derived from the
Hamiltonian (35), are defined automatically using the
Poisson’s bracket are given as following:

@agbl = {gbl,HGR}P.B =
@HGR

@pabl
, (16)

@ap
abl = {p

abl
,HGR}P.B = �

@HGR

@gbl
. (17)

We explicitly can write this pair of Hamilton’s equation
given as follows:

2
p
g
@agbl = M

a
0
b
0
l
0
deh

Mrsta0b0l0Muvwdeh ⇥

⇣
�
u

a
�
v

b
�
w

l
p
rst + �

r

a
�
s

b
�
t

l
p
uvw

⌘
. (18)

�
2
p
g
@ap

abl = M
a
0
b
0
l
0
deh

p
rst

Mrsta0b0l0p
uvw

@Muvwdeh

@gbl
+M

a
0
b
0
l
0
deh

p
rst

Muvwdeh

@Mrsta0b0l0

@gbl
(19)

+
@Ma0b0l0deh

@gbl
p
rst

Mrsta0b0l0p
uvw

Muvwdeh +M
a
0
b
0
l
0
deh

@p
rst

@gbl
Mrsta0b0l0p

uvw
Muvwdeh

+M
a
0
b
0
l
0
deh

p
rst

Mrsta0b0l0
@p

uvw

@gbl
Muvwdeh.

This set of first order partial di↵erential equations are
considered the first phase space alternative to the original
gravitational field equations. These equations are consid-
ered as important results of my current letter. When we
succeed to write a covariance Hamiltonian, the Hamil-
ton’s equations are first order version of the Einstein field
equations. In my knowledge this is the first time in liter-
ature when a first order Hamiltonian version of the grav-
itational field equations. The set of equations given in
(16,17) are defined when a first first order Hamiltonian
version of the field equations for a generic Lorentzian
metric. I believe that one can integrate this system as
a general non autonomous dynamical system for a given
set of the appropriate initial values of the metric and su-
per momentum given as a specific initial position x

a

0 (not
specific time as is commonly considered as the initial con-
dition in QG literature) .A remarkable observation that
the system may possess chaotic behavior and doesn’t suf-
fer from Cauchy’s problem. We have now the classical
Hamiltonian and the set of Poisson brackets. Now we can
develop a qunatum version and obtain qunatum Hamil-
tonian for GR. This will be done in the next section.

IV. QUANTIZATION OF GR

In this section, I’m going to define appropriate forms
for Dirac brackets simply by defining,

⇡̂
rst

⌘ �i~r @

@ĝst
, (20)

h
ĝab, ⇡̂

rst

i
= i~r�st

ab
(21)

Instead of the usual fundamental reduced planck con-
stant (dirac constant) ~ we required to define a vector
one, the reason is that even the classical phase space

spanned by the
⇣
gab, p

rst

⌘
one has more degrees of free-

dom (dof), basically is 105(= 10 ⇥ 104) dimensional for
a Riemannian manifold. The Dirac constant ~ is pro-
portional to the minimum volume of the phase space V0

defined as

!0 =

Z
D(gab, p

rst). (22)

where the D(gab, prst) is a measure for the super phase
space and D(gab, prst) is a covariant volume element. We
obviously see that the !0 is related to the dof of the
system, for example if the system has f numbers of dof,
then the minimal volume of the phase space is given as ~f
and here ~ / f

�1 log(!0), note that in our new formalism
f = 105 � 1, as a result the e↵ective ||~r|| ⌧ ~.



Quantization of GR
• I'm going  to define appropriate  forms for  Dirac brackets: 

, 


• The classical phase space spanned by the one  has more degrees of 
freedom (dof), basically is  dimensional for a Riemannian  manifold. 


• The Dirac constant  is proportional to the minimum volume  of the phase space  

defined as ,   is a covariant  volume element.


• The super mass tensor is a homogeneous (order 6) of the metric tensor

̂πrst ≡ − iℏr ∂
∂ ̂gst

[ ̂gab, ̂πrst] = iℏrδst
ab

(gab, prst)
105( = 10 × 104)

ℏ V0

ω0 = ∫ D(gab, prst) D(gab, prst)

M = Mabldeh



Quantization of GR
• Using the formalism of quantization for PDM systems the canonical  quantized 

Hamiltonian for GR is:  

here the  auxiliary, scaled  super mass tensor   is 
.


• It is adequate to write the quantum Hamiltonian in the following closed form:

 

where  is contravariant component of the super momentum  , etc.


• The above quantization of Hamiltonian is covariant since we didn't specify 
time  from the other spatial coordinates . 

ℋ̂GR( ̂gab,
∂

∂ ̂gst
) = −

1
2

f1/2
rstuvwℏr ∂

∂ ̂gst
[f1/2

rstuvwℏu ∂
∂ ̂gvw

]
frstuvw

frstuvw ≡ |g |−1/4 MabldehMrstablMuvwdeh

ℋ̂GR( ̂gab, ̂πmnp) =
1
2 [ |g |−1/2 MMM]

1/2
̂π[ |g |−1/2 MMM]

1/2
̂π

π π

t xA



Quantization of GR
• The model is considered as a timeless model, i.e, there is no first order time 

derivative in the final wave equation like 


• The associated functional second order  wave equation  which is fully locally 
Lorentz invariant as well as general covariant:




• In our suggested  functional  wave equation for , we end up by the 
covariant (no first order derivative) of the functional Hilbert space.


• This model is a subclass of the timeless models of QG

∂
∂t

.

−
1
2

f1/2
rstuvwℏr ∂

∂ ̂gst
[f1/2

rstuvwℏu ∂
∂ ̂gvw

Ψ( ̂gab)] = EΨ( ̂gab)

Ψ( ̂gab)



Quantum cosmology
• We consider flat, Friedmann-Lemaître-Robertson-Walker (FLRW) model with 

Lorentzian metric    where  is the unit metric tensor for 
flat space, in coordinates 


• The non vanishing elements of the super mass tensor:



• The auxiliary scaled  super mass tensor 


• The functional wave equation reduces to the hypersurfaces  coordinates 
: 

gab = diag(1, − a(t)Σ3) Σ3
xa = (t, x, y, z) .

Mabldeh = − 12a−2δa0δd0δBLδEH, B, L, E, H = 1,2,3

frstuvw = −
3a1/2

4
δu0δr0δVWδST

Σ3
XA = (x, y, z)
3ℏ2

0a1/2

8
∂2Ψ( ̂gAB)
∂ ̂gSS∂gVV

= EΨ( ̂gAB)



Quantum cosmology
• it reduces simply to the following ordinary differential equation




• It can be reduce to a standard second order differential equation for wave function 

, .


• There are exact solutions for asymptotic regimes:

.


• By suggesting  and  will come as a 

transcendental (hypergeometric) function.

aΨ′ ′ (a) − Ψ′ (a) −
32Ea5/2

3h2
0

Ψ(a) = 0

Ψ(a) = aϕ(a) ϕ′ ′ (a) − (32Ea1/2

3h2
0

+
3

4a2 )ϕ(a) = 0

a3/2if a → 0, exp[
16 2E

5 3h0

a5/4]if a → ∞

ϕ(a) = ζ(a)a3/2 exp[
16 2E

5 3h0

a5/4] ζ(a)



Quantum cosmology
Complete wave function:

•
The eigenvalue  (positive, negative or zero ) can be discrete as well as 
continuous (bound states for  ).


• Remarkable is for vanishing energy state,  
.

Ψ(a) = a5/2 exp[
16 2E

5 3ℏ
a5/4]

32/5ℏ4/5e
− 2

15 ( 8 6ea5/4
ℏ + 3) 5c1Γ ( 1

5 ) I− 4
5

16 2e
3 a5/4

5ℏ
+ 32 5 2c2Γ ( 4

5 ) I4
5

16 2e
3 a5/4

5ℏ

64 5 5a
E

E < 0

E = 0
Ψ(a) = N0 + Na2



Note about ADM decomposition formalism and reduced phase space

• In our formalism If one adopt the ADM decomposition of the metric  as 
follows

 
here   is time,  refer to the spatial coordinates and  is 
spatial metric, we recall the super conjugate momentum

 

Building the Hamiltonian in a standard format as:




•  Again we can recover ADM Hamiltonian!

gab

ds2 = gabdxadxb = hABdxAdxB + 2NAdxAdx0 + (−N2 + hABNANB)(dx0)2

x0 A, B = 1,2,3 hAB

πrs =
∂ℒGR

∂ ·gst
=

g

2 (M0stdeh∂dgeh + Mabl0st∂agbl)
ℋADM

GR =
1

2 |g |
MabldehM0stablπstM0vwdehπvw



Final remarks
• The canonical covariant qunatization which I proposed here is a consistent theory.


• The GR action in a suitable form the Lagrangian reduced to a purely kinetic theory 
with position dependence mass term.


• With such a simple quadratic Lagrangian, I defined a conjugate momentum 
corresponding to the metric tensor. 


•  I developed a classical Hamiltonian using the metric and its conjugate 
momentum.


• One can write classical Hamilton's equations for metric and momentum are 
analogous to the second order nonlinear Einstein field equations.


• We replaced Poisson's brackets with Moyal(Dirac) and we defined a quantum 
Hamiltoninan for GR.



Final remarks
• I notice here that even if we didn't remove second derivative terms using 

integration part by part, it was possible to define a second conjugate 

momentum: .


• If we impose a Bianchi identity between , it is possible to fix 
this new momentum in terms of the other one and the metric.


• with the Bianchi identity, 



•  A suitable Legendre transformation from the GR Lagrangian 



• One obtains  a standard Hamiltoninan without this new higher order momentum. 

rabcd =
∂ℒGR

∂(∂a∂bgcd)

(gab, prst, rabcd)

{gab, {pcde, rfghi}P.B}P.B + {pcde, {rfghi, gab}P.B}P.B + {rfghi, {gab, pcde}P.B}P.B = 0

ℋGR = prst∂rgst + rabcd(∂a∂bgcd) − ℒGR



THANK YOU !
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