Position-Dependent Mass Quantum systems and ADM formalism

Davood J. Momeni Sultan Qaboos University & North-West University

International Conference on Holography, String Theory and Discrete Approaches in Hanoi 6 August 2020

Contents

- Introduction
- Super Mass Tensor for GR as PDM classical system
- Super phase space
- Reduction of the Einstein Field Equations (EFE) to Hamilton's equation via covariant Hamiltonian
- Quantization of GR
- Quantum cosmology
- Note about ADM decomposition formalism and reduced phase space
- Final remarks

- Classical mechanics is Galilean invariant, i.e, time parameter t and position coordinate q(t) are explicitly functions of each other.
- Non existence of a locally Lorentz invariant quantum theory with single particle interpretation.
- In GR, we have difficulty to interpret time as we did in classical mechanics.
- GR is locally Lorentz invariant (time t is just a coordinate and is no longer considered as a parameter).
- In the language of the variational calculus, the analogue to coordinate q(t) is the Riemannian metric $g_{ab}(x^c)$, a, b = 0...3 is a function of the all coordinates $x^c = (t, x^A)$, A = 1,...3.

- That makes quantum gravity difficult to build. Basically we have several QGs,
- Semiclassical quantum gravity (quantum fields on classical backgrounds)
- Loop Quantum gravity
- String Theory
- Non commutativity as a way to address quantum effects in gravity (singularities,..)
- Lorentz symmetry breaking (Lifshitz theories(stochastically renormalizable),..)
- It seems we have the problem of "disappearance of time" (Timeless quantum gravity)

we are still looking for a fully covariant canonical quantum theory for gravity!

- My observations initiated when I studied GR as a classical gauge theory [M. Carmeli, "Claasical fields: General Relativity and Gauge Theory" (1982)]
- During studying non standard classical dynamical systems I found a class of Lagrangian models with second order time derivative of the position $L(q, \dot{q}, \ddot{q})$.
- A wide class of such models reduce to the position dependence mass (PDM) models[1507.05217,1605.06829, 1710.02135].
- It is obviously interesting to show that whether GR reduces to such models!.
- The classical Einstein-Hilbert (EH) Lagrangian reduces to the positiondependent -mass (PDM) model up to a boundary term.

Introduction Analogy between classical mechanics and GR

- GR espects gauge transformations (any type of arbitrary change in the coordinates, from one frame to the other $x^a \to \tilde{x}^a$)
- We can rewrite EH Lagrangian in terms of the metric, first and second derivatives of it. It looks like a classical system in the form of $L(q, \dot{q}, \ddot{q})$.
- In this formal analogy, the classical acceleration term \ddot{q} in the classical models under study is now replaced with the second derivative for metric i.e, $\partial_e \Gamma_{dab}$.
- we will need to define a super mass tensor as a function of the metric instead of the common variable mass function m(q(t)) in classical mechanic.

Introduction Analogy between classical mechanics and GR

Theory	Position	Velocity	Acceleration	Mass
Classical Mechanics with PDM	q(t)	$\dot{q}(t)$	$\ddot{q}(t)$	Scalar mass $m(q(t))$
GR	g_{ab}	$\partial_d g_{ab}$	$\partial_e\partial_d g_{ab}$	M^{abldeh}

- The notation for Einstein-Hilbert action is: $S_{EH} = \int d^4x \mathcal{L}_{GR}$
- Here $\mathcal{L}_{\mathit{GR}} = \mathcal{L}_{\mathit{GR}}(|g|, \partial |g|, g, \overline{g}, \partial g, \partial \overline{g})$
- Notations: $g \equiv g_{ab}$, $\overline{g} \equiv g^{ab}$, $|g| \equiv \det(g_{ab}) = \frac{1}{\det(\overline{g})}$, $\frac{1}{2}\overline{g} \cdot \partial g \equiv \Gamma^a_{bc}$, $\partial g = \Gamma_{bla} \equiv g_{bl,a} + g_{la,b} g_{ba,l}$.
- We adopt metricity condition $\nabla_a g^{bc} = |g|^{-1/2} \partial_a (|g|^{1/2} g^{bc}) \equiv |g|^{-1/2} \partial (|g|^{1/2} \overline{g}) = 0$ along $\partial \cdot \overline{g} = -\overline{g} \cdot \partial g \cdot \overline{g}$.
- I showed that GR Lagrangian reduces to a PDM fully classical system with a super mass tensor of rank six.
- I built a consistent super phase space as well as a set of Poisson brackets.
- I show that gravitational field equations reduced top a set of first order Hamilton's equations.

Super Mass Tensor for GR as PDM classical system Equivalent form for Lagrangian of the GR

• One can eliminate the second derivative term $\partial_{de}g_{ab}$ simply by integrating by part and using the metricity

condition
$$\nabla_a g^{bc} = 0$$
, by taking into the account all the above requirements a possible:
$$\mathscr{L}_{GR} = \frac{1}{2} \sqrt{|g|} \left(g^{al} g^{be} \Gamma_{bla} \partial^h g_{eh} + g^{be} g^{dh} \Gamma_{bld} \partial^l g_{eh} + \frac{1}{2} g^{al} g^{bd} g^{te} \Gamma_{tld} \Gamma_{bea} - \frac{1}{2} g^{al} g^{bd} g^{te} \Gamma_{tla} \Gamma_{bed} \right) \text{and we}$$
 have $S_{EH} = \int d^4 x \mathscr{L}_{GR} + B \cdot T$

By B.T we mean boundary term defined as:

$$B.T = \int_{\partial \mathcal{M}} \sqrt{|h_{AB}|} h^{BD} h^{AL} \Gamma_{BLA}|_{x^D = constant} + \int_{\partial \mathcal{M}} \sqrt{|h_{AB}|} h^{BD} h^{AL} \Gamma_{BLD}|_{x^A = constant}$$

• We can re express the above GR Lagrangian in our convenient notations as:
$$\mathscr{L}_{GR} = \frac{1}{2} \sqrt{|g|} \left(\overline{g} \cdot \partial g \cdot \overline{g} \cdot \overline{\partial} g + \overline{g} \cdot \overline{g} \cdot \partial g \cdot \overline{\partial} g + \frac{1}{2} \overline{g} \cdot \overline{g} \cdot \overline{g} \cdot \partial g \cdot \partial g \cdot \partial g - \frac{1}{2} \overline{g} \cdot \partial g \cdot \overline{g} \cdot \overline{g} \cdot \partial g \right)$$

Note that by dot" we mean tensor product(we adopt Einstein summation rule).

Super Mass Tensor for GR as PDM classical system

- From the above representation we can realize $\{g,\overline{g}\}$ as two fields, in analogy to the Dirac Lagrangian where the fermionic pairs $\psi,\bar{\psi}$ appeared.
- The difference here is due to the fact that the pair of objects $\{g, \overline{g}\}$ depend on each other as we know $g \cdot \overline{g} = \delta$, the Kronecker delta, however in the Dirac Lagrangian the norm $\overline{\psi}\dot{\psi} \neq I$.
- In our program we won't use this duality and we will focus on the coordinates representation of the GR Lagrangian.
- If we substitute the definition of Gamma terms and combine the theory, we obtain the final form for the Lagrangian as a PDM system for coordinate g_{ab} :

$$\mathcal{L}_{GR} = \frac{1}{2} \sqrt{|g|} M^{abldeh} \partial_a g_{bl} \partial_d g_{eh}$$

Super Mass Tensor for GR as PDM classical system

Definition of super mass tensor:

$$\begin{split} |g|^{1/2}\overline{M} &= |g|^{1/2}M^{a_1b_1l_1d_1e_1h_1} = \frac{1}{4}g^{al}\,g^{bd}\,g^{te} \times \\ & \left(\delta_a^{a_1}\,\delta_b^{b_1}\,\delta_e^{l_1} + \delta_a^{b_1}\,\delta_b^{a_1}\,\delta_e^{l_1} - \delta_a^{l_1}\,\delta_b^{b_1}\,\delta_e^{a_1}\right) \left(\delta_d^{d_1}\,\delta_l^{h_1}\,\delta_t^{e_1} - \delta_d^{h_1}\,\delta_l^{d_1}\,\delta_t^{e_1} + \delta_d^{e_1}\,\delta_l^{h_1}\,\delta_l^{d_1}\right) \\ & -\frac{1}{4}g^{al}\,g^{bd}\,g^{te}\,\left(\delta_b^{a_1}\,\delta_d^{b_1}\,\delta_e^{l_1} + \delta_b^{b_1}\,\delta_d^{a_1}\,\delta_e^{l_1} - \delta_b^{b_1}\,\delta_d^{l_1}\,\delta_e^{a_1}\right) \left(\delta_a^{d_1}\,\delta_l^{h_1}\,\delta_t^{e_1} - \delta_a^{h_1}\,\delta_l^{d_1}\,\delta_t^{e_1} + \delta_a^{e_1}\,\delta_l^{h_1}\,\delta_t^{d_1}\right) \\ & +\frac{1}{4}g^{al}\,g^{bd}\,g^{te}\,\left(\delta_a^{d_1}\,\delta_b^{e_1}\,\delta_e^{h_1} + \delta_a^{e_1}\,\delta_b^{d_1}\,\delta_e^{h_1} - \delta_a^{h_1}\,\delta_e^{e_1}\,\delta_e^{d_1}\right) \left(\delta_a^{a_1}\,\delta_l^{l_1}\,\delta_t^{b_1} - \delta_d^{l_1}\,\delta_l^{a_1}\,\delta_t^{b_1} + \delta_d^{b_1}\,\delta_l^{l_1}\,\delta_t^{a_1}\right) \\ & -\frac{1}{4}g^{al}\,g^{bd}\,g^{te}\,\left(\delta_b^{d_1}\,\delta_d^{e_1}\,\delta_e^{h_1} + \delta_b^{e_1}\,\delta_d^{d_1}\,\delta_e^{h_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_e^{d_1}\right) \left(\delta_a^{a_1}\,\delta_l^{l_1}\,\delta_t^{b_1} - \delta_a^{l_1}\,\delta_l^{a_1}\,\delta_t^{b_1} + \delta_a^{b_1}\,\delta_l^{l_1}\,\delta_t^{a_1}\right) \\ & +g^{al}\,\delta_a^{d_1}\,g^{be}\,g^{dh}\,\delta_e^{e_1}\,\delta_h^{h_1}\,\left(\delta_b^{b_1}\,\delta_d^{a_1}\,\delta_l^{l_1} + \delta_a^{b_1}\,\delta_l^{l_1}\,\delta_l^{b_1} - \delta_b^{b_1}\,\delta_d^{l_1}\,\delta_l^{b_1}\,\delta_l^{a_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_e^{e_1}\,\delta_h^{h_1}\,\left(\delta_a^{e_1}\,\delta_d^{h_1}\,\delta_l^{h_1} + \delta_a^{l_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_l^{e_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_e^{e_1}\,\delta_h^{h_1}\,\left(\delta_a^{e_1}\,\delta_d^{h_1}\,\delta_l^{h_1} + \delta_a^{l_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_l^{e_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_e^{e_1}\,\delta_h^{h_1}\,\left(\delta_a^{e_1}\,\delta_d^{h_1}\,\delta_l^{h_1} + \delta_a^{h_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_l^{e_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_e^{b_1}\,\delta_h^{l_1}\,\left(\delta_a^{e_1}\,\delta_d^{h_1}\,\delta_l^{h_1} + \delta_a^{h_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_b^{e_1}\,\delta_d^{h_1}\,\delta_l^{e_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_e^{b_1}\,\delta_h^{l_1}\,\left(\delta_a^{e_1}\,\delta_d^{h_1}\,\delta_l^{h_1} + \delta_a^{h_1}\,\delta_d^{h_1}\,\delta_l^{e_1} - \delta_a^{h_1}\,\delta_l^{e_1}\,\delta_l^{h_1}\right) \\ & +g^{al}\,g^{be}\,g^{dh}\,\delta_d^{a_1}\,\delta_l^{e_1}\,\delta_h^{l_1}\,\left(\delta_a^{e_1}\,\delta_l^{h_1} + \delta_a^{h_1}\,\delta_l^{h_1}\,\delta_l^{e_1$$

Super Mass Tensor for GR as PDM classical system

Having the Lagrangian of GR, one can define a canonical pair of position conjugate momentum (g, \overline{p}) and construct a phase space.

Super phase space

Defining the super conjugate momentum tensor:

$$p^{rst} = \frac{\partial \mathcal{L}_{GR}}{\partial (\partial_r g_{st})} = \frac{\sqrt{g}}{2} \left(M^{rstdeh} \partial_d g_{eh} + M^{ablrst} \partial_a g_{bl} \right)$$

- Note that for the mass tensor $M^{rstdeh}\partial_d g_{eh} = M^{ablrst}\partial_a g_{hl}$.
- A possible classical Hamiltonian: $\mathcal{H}_{GR} = \frac{1}{2\sqrt{|g|}} M^{abldeh} M_{rstabl} p^{rst} M_{uvwdeh} p^{uvw}$

• A possible Poisson's bracket
$$\{F,G\}_{P.B}$$
 adopted to this system is: $\{F(g_{mn},p^{stu}),G(g_{mn},p^{stu})\}_{P.B} = \sum \left(\frac{\partial F}{\partial g_{ab}}\frac{\partial G}{\partial p^{rst}} - \frac{\partial F}{\partial p^{rst}}\frac{\partial G}{\partial g_{ab}}\right)$

• In our notation it simplifies to the following expression

$$\{F(g,\overline{p}), G(g,\overline{p})\}_{P.B} = \sum \left(\frac{\partial F}{\partial g} \frac{\partial G}{\partial \overline{p}} - \frac{\partial F}{\partial \overline{p}} \frac{\partial G}{\partial g}\right)$$

• For our super phase coordinates (g_{ab}, p^{rst}) , I postulate that $\{g_{ab}, p^{rst}\}_{P.B} = c^r \delta_{ab}^{rs}$

Super phase space

- Here δ_{ab}^{rst} is the generalized Kronecker defined as $\delta_{ab}^{rst}=2!\delta_{[a}^{s}\delta_{b]}^{t}$.
- In the above Poisson's bracket, with structure constants c^r provide a classical minimal volume for super phase space (zero for Poisson's bracket same objects).
- We have now full algebraic structures in the super phase space and canonical Hamiltonian.
- We can write down Hamilton's equations as first order reductions of the Euler-Lagrange equations derived from the Lagrangian.
- I will show that how Einstein equation reduces to a type of covariant Hamilton equations.

Reduction of the Einstein Field Equations (EFE) to Hamilton's equation via covariant Hamiltonian

• The set of Hamilton's equations derived from the Hamiltonian $\partial_a g_{bl} = \{g_{bl}, \mathcal{H}_{GR}\}_{P.B} = \frac{\partial \mathcal{H}_{GR}}{\partial p_{abl}}$, $\partial_a p^{abl} = \{p^{abl}, \mathcal{H}_{GR}\}_{P.B} = -\frac{\partial \mathcal{H}_{GR}}{\partial g_{IJ}}$

• We explicitly can write this pair of Hamilton's equation given as follows:
$$\frac{2}{\sqrt{g}} \partial_a g_{bl} = M^{a'b'l'deh} M_{rsta'b'l'} M_{uvwdeh} \left(\delta_a^u \delta_b^v \delta_l^w p^{rst} + \delta_a^r \delta_b^s \delta_l^t p^{uvw} \right)$$

$$- \frac{2}{\sqrt{g}} \partial_a p^{abl} = M^{a'b'l'deh} p^{rst} M_{rsta'b'l'} p^{uvw} \frac{\partial M_{uvwdeh}}{\partial g_{bl}} + M^{a'b'l'deh} p^{rst} M_{uvwdeh} \frac{\partial M_{rsta'b'l'}}{\partial g_{bl}}$$

$$+ \frac{\partial M_{a'b'l'deh}}{\partial g_{bl}} p^{rst} M_{rsta'b'l'} p^{uvw} M_{uvwdeh} + M^{a'b'l'deh} \frac{\partial p^{rst}}{\partial g_{bl}} M_{rsta'b'l'} p^{uvw} M_{uvwdeh}$$

$$+ M^{a'b'l'deh} p^{rst} M_{rsta'b'l'} \frac{\partial p^{uvw}}{\partial g_{bl}} M_{uvwdeh}.$$

I believe that one can integrate this system as a general non autonomous dynamical system.

Quantization of GR

• I'm going to define appropriate forms for Dirac brackets:

$$\hat{\pi}^{rst} \equiv -i\hbar^r \frac{\partial}{\partial \hat{g}_{st}}, \left[\hat{g}_{ab}, \hat{\pi}^{rst}\right] = i\hbar^r \delta_{ab}^{st}$$

- The classical phase space spanned by the $\left(g_{ab},p^{rst}\right)$ one has more degrees of freedom (dof), basically is $10^5(=10\times10^4)$ dimensional for a Riemannian manifold.
- The Dirac constant \hbar is proportional to the minimum volume of the phase space V_0 defined as $\omega_0 = \int D(g_{ab}, p^{rst}), D(g_{ab}, p^{rst})$ is a covariant volume element.
- The super mass tensor $\overline{M}=M^{abldeh}$ is a homogeneous (order 6) of the metric tensor

Quantization of GR

- Using the formalism of quantization for PDM systems the canonical quantized Hamiltonian for GR is: $\hat{\mathcal{H}}_{GR}(\hat{g}_{ab},\frac{\partial}{\partial \hat{g}_{st}}) = -\frac{1}{2}f_{rstuvw}^{1/2}\hbar^r\frac{\partial}{\partial \hat{g}_{st}}\left[f_{rstuvw}^{1/2}\hbar^u\frac{\partial}{\partial \hat{g}_{vw}}\right]$ here the auxiliary, scaled super mass tensor f_{rstuvw} is $f_{rstuvw} \equiv |g|^{-1/4}M^{abldeh}M_{rstabl}M_{uvwdeh}$.
- It is adequate to write the quantum Hamiltonian in the following closed form: $\hat{\mathscr{H}}_{GR}(\hat{g}_{ab},\hat{\pi}^{mnp}) = \frac{1}{2} \left[\|g\|^{-1/2} \overline{M}MM \right]^{1/2} \overline{\hat{\pi}} \left[\|g\|^{-1/2} \overline{M}MM \right]^{1/2} \overline{\hat{\pi}}$ where $\overline{\pi}$ is contravariant component of the super momentum π , etc.
- The above quantization of Hamiltonian is covariant since we didn't specify time t from the other spatial coordinates x^A .

Quantization of GR

- The model is considered as a timeless model, i.e, there is no first order time derivative in the final wave equation like $\frac{\partial}{\partial t}$.
- The associated functional second order wave equation which is fully locally Lorentz invariant as well as general covariant:

$$-\frac{1}{2}f_{rstuvw}^{1/2}\hbar^{r}\frac{\partial}{\partial\hat{g}_{st}}\left[f_{rstuvw}^{1/2}\hbar^{u}\frac{\partial}{\partial\hat{g}_{vw}}\Psi(\hat{g}_{ab})\right] = E\Psi(\hat{g}_{ab})$$

- In our suggested functional wave equation for $\Psi(\hat{g}_{ab})$, we end up by the covariant (no first order derivative) of the functional Hilbert space.
- This model is a subclass of the timeless models of QG

Quantum cosmology

- We consider flat, Friedmann-Lemaître-Robertson-Walker (FLRW) model with Lorentzian metric $g_{ab}=diag(1,-a(t)\Sigma_3)$ where Σ_3 is the unit metric tensor for flat space, in coordinates $x^a=(t,x,y,z)$.
- The non vanishing elements of the super mass tensor: $M^{abldeh} = -12a^{-2}\delta^{a0}\delta^{d0}\delta^{BL}\delta^{EH}, B, L, E, H = 1,2,3$
- . The auxiliary scaled super mass tensor $f_{rstuvw}=-rac{3a^{1/2}}{4}\delta_{u0}\delta_{r0}\delta_{VW}\delta_{ST}$
- The functional wave equation reduces to the hypersurfaces Σ_3 coordinates $X^A = (x, y, z)$:

$$\frac{3\hbar_0^2 a^{1/2}}{8} \frac{\partial^2 \Psi(\hat{g}_{AB})}{\partial \hat{g}_{SS} \partial g_{VV}} = E \Psi(\hat{g}_{AB})$$

Quantum cosmology

it reduces simply to the following ordinary differential equation

$$a\Psi''(a) - \Psi'(a) - \frac{32Ea^{5/2}}{3h_0^2}\Psi(a) = 0$$

It can be reduce to a standard second order differential equation for wave function

$$\Psi(a) = \sqrt{a}\phi(a), \, \phi''(a) - \left(\frac{32Ea^{1/2}}{3h_0^2} + \frac{3}{4a^2}\right)\phi(a) = 0.$$

There are exact solutions for asymptotic regimes:

$$a^{3/2}$$
 if $a \to 0$, $\exp\left[\frac{16\sqrt{2E}}{5\sqrt{3}h_0}a^{5/4}\right]$ if $a \to \infty$.

By suggesting $\phi(a)=\zeta(a)a^{3/2}\exp[\frac{16\sqrt{2E}}{5\sqrt{3}h_0}a^{5/4}]$ and $\zeta(a)$ will come as a transcendental (hypergeometric) function.

Quantum cosmology

Complete wave function:

$$3^{2/5}\hbar^{4/5}e^{-\frac{2}{15}\left(\frac{8\sqrt{6}ea^{5/4}}{\hbar}+3\right)}\left(5c_1\Gamma\left(\frac{1}{5}\right)I_{-\frac{4}{5}}\left(\frac{16\sqrt{\frac{2e}{3}}a^{5/4}}{5\hbar}\right)+32\sqrt[5]{2}c_2\Gamma\left(\frac{4}{5}\right)I_{\frac{4}{5}}\left(\frac{16\sqrt{\frac{2e}{3}}a^{5/4}}{5\hbar}\right)\right)$$

$$\Psi(a)=a^{5/2}\exp\left[\frac{16\sqrt{2E}}{5\sqrt{3}\hbar}a^{5/4}\right]$$
 The eigenvalue E (positive, negative or zero) can be discrete as well as continuous (bound states for $E<0$).

• Remarkable is for vanishing energy state,E=0 $\Psi(a)=N_0+Na^2$.

Note about ADM decomposition formalism and reduced phase space

• In our formalism If one adopt the ADM decomposition of the metric g_{ab} as follows

 $ds^2 = g_{ab}dx^adx^b = h_{AB}dx^Adx^B + 2N_Adx^Adx^0 + (-N^2 + h^{AB}N_AN_B)(dx^0)^2$ here x^0 is time, A, B = 1, 2, 3 refer to the spatial coordinates and h_{AB} is spatial metric, we recall the super conjugate momentum

$$\pi^{rs} = \frac{\partial \mathcal{L}_{GR}}{\partial \dot{g}_{st}} = \frac{\sqrt{g}}{2} \left(M^{0stdeh} \partial_d g_{eh} + M^{abl0st} \partial_a g_{bl} \right)$$

Building the Hamiltonian in a standard format as:

$$\mathcal{H}_{GR}^{ADM} = \frac{1}{2\sqrt{|g|}} M^{abldeh} M_{0stabl} \pi^{st} M_{0vwdeh} \pi^{vw}$$

Again we can recover ADM Hamiltonian!

Final remarks

- The canonical covariant qunatization which I proposed here is a consistent theory.
- The GR action in a suitable form the Lagrangian reduced to a purely kinetic theory with position dependence mass term.
- With such a simple quadratic Lagrangian, I defined a conjugate momentum corresponding to the metric tensor.
- I developed a classical Hamiltonian using the metric and its conjugate momentum.
- One can write classical Hamilton's equations for metric and momentum are analogous to the second order nonlinear Einstein field equations.
- We replaced Poisson's brackets with Moyal(Dirac) and we defined a quantum Hamiltoninan for GR.

Final remarks

 I notice here that even if we didn't remove second derivative terms using integration part by part, it was possible to define a second conjugate

momentum:
$$r^{abcd} = \frac{\partial \mathcal{L}_{GR}}{\partial (\partial_a \partial_b g_{cd})}$$
.

- If we impose a Bianchi identity between $\left(g_{ab},p^{rst},r^{abcd}\right)$, it is possible to fix this new momentum in terms of the other one and the metric.
- with the Bianchi identity, $\{g_{ab},\{p^{cde},r^{fghi}\}_{P.B}\}_{P.B}+\{p^{cde},\{r^{fghi},g_{ab}\}_{P.B}\}_{P.B}+\{r^{fghi},\{g_{ab},p^{cde}\}_{P.B}\}_{P.B}=0$
- A suitable Legendre transformation from the GR Lagrangian $\mathcal{H}_{GR} = p^{rst} \partial_r g_{st} + r^{abcd} (\partial_a \partial_b g_{cd}) \mathcal{L}_{GR}$
- One obtains a standard Hamiltoninan without this new higher order momentum.

THANK YOU!

References

- J. Barbour, Class. Quant. Grav. 11, 2853 (1994). doi:10.1088/0264-9381/11/12/005
- D. B.-Mitchell, K. Miller, "Quantum gravity, timeless-ness, and the contents of thought," Philos Stud (2019) 176:18071829.
- C. Kiefer, Quantum gravity, Oxford University Press [Int. Ser. Monogr. Phys. 155 (2012)].
- B. Dewitt, "Quantum Theory of Gravity. I. The Canoni- cal Theory". Physical Review. 160 (5): 11131148 (1967)...
- J. R. Morris. "New scenarios for classical and quan- tum mechanical systems with position dependent mass," Quant. Stud. Math. Found. 2, no. 4, 359 (2015),arXiv preprint 1507.05217.
- •A. Ballesteros, I. Gutirrez-Sagredo and P. Naranjo."

 On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications" Phys. Lett. A 381, 701 (2017), arXiv preprint 1605.06829.
- •J. F. Carinena, M. F. Ranada and M. Santander, "Quan-tization of Hamiltonian systems with a position de-pendent mass: Killing vector fields and Noether mo menta approach," J. Phys. A 50, no. 46, 465202 (2017) [arXiv:1710.02135 [math-ph]].