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Background



Background

• Hawking radiation: black holes can radiate at the quantum level.
(S.W. Hawking, Nature, 1974)

• Equivalence principle: accelerated frames can mimic gravity locally.

• Unruh effect: an accelerated observer will see particles in the

Minkowski vacuum. (W.G. Unruh, PRD, 1976)

– Analogous to Hawking effect.

• QM: information can not be created or destroyed (unitarity).

• Black hole information paradox: the thermal nature of Hawking

radiation is a mixed state. (S.W. Hawking, CMP, 1975)

• Present Situation: quantum entanglement (information theory) may

be important to explore the quantum nature of gravity and so the

information paradox.
(S. Bose et al, PRL, 2017; C. Marletto and V. Vedral, PRL, 2017)

Exploration of quantum entanglement in accelerated and gravitational

systems is very important.

————————————————
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What is entanglement harvesting

or leakage?



What is “Entanglement Harvesting ( or Leakage)”?

• Two two-level detectors (Unruh De-Witt detectors) and allow them

to locally interact with a free quantum field.

• Entanglement Harvesting (or leakage): After some time, these two

detectors may become more (or less) entangled, even if they are

remain spacelike separated.

• Nature of entanglement is depends on the background quantum

fields and motion of the detectors.
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Methodology for our study
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System of two detectors

• Let us consider two two-level detectors: A and B.

They interacts with the background fields with

Sint =

∫
dτj

∑
j=A,B

λjχj(τj)mj(τj)ϕ(xj) (1)

where, mj(0) = |gj⟩⟨ej |+ |ej⟩⟨gj | and χj(τj) = 1 .

• The total initial state at asymptotic past

|in⟩ = |gAgB⟩ ⊗ |0M⟩ . (2)

• The final state at the asymptotic future

|out⟩ = Te iSint |in⟩ . (3)

• Final density matrix of the two detectors system is

ρAB = Trϕ(|out⟩⟨out|) . (4)
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Final density matrix of two detectors

• The final density matrix in the bases {|eAeB⟩, |eAgB⟩, |gAeB⟩,
|gAgB⟩} is(Reznik, Found Phys, 2003; Koga et al, PRA, 2018)

ρAB =


0 0 0 E
0 PA PAB 0

0 P⋆
AB PB 0

E⋆ 0 0 1− PA − PB

+ O(λ4) ; (5)

– Excitation probability of j th detector (λI = λj = λ)

Pj = λ2

∫ ∞

−∞

∫ ∞

−∞
dτjdτ

′
j e

i∆E(τj−τ ′
j )GW (x ′j , xj) (6)

– Entangling term

E = −λ2

∫ ∞

−∞

∫ ∞

−∞
dτ ′AdτB e i∆E(τ ′

A+τB )iGF (xB , x
′
A) (7)

– Shared information between the detectors PAB .
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Measure of entanglement

• Positivity of the density matrix required
(Koga, Kimura, and Maeda, PRA, 2018)

PAPB > |PAB |2 . (8)

• Negativity: a negative eigenvalue of partial transpose of ρAB
(
ρTA

AB

)
requires(Peres, PRL, 1996)

|E|2 > PAPB . (9)

• Concurrence: a faithful quantification of entanglement
(Hill, Wootters, PRL, 1997; Wootters, PRL, 1998)

CJ(ρAB) = 2(|E| −
√
PAPB) + O(λ4)

Concurrence = Max{0,CJ} . (10)
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Entanglement Harvesting in

Accelerated Systems



Accelerated observers
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• The trajectories of uniformly accelerating detectors(Birrell, Davies, 1982)

t =
1

b
sinh(bτ), x =

1

b
cosh(bτ) in RRW ;

t ′ =
1

b
sinh(bτ ′), x ′ = −1

b
cosh(bτ ′) in LRW. (11)

• In terms of Rindler coordinates: τ = ±eaξ η and b = a e−aξ .

(we consider ξ = ξ′ = 0).
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Role of thermal fields



Role of thermal fields

• Thermal Green’s function

Gβ
Wmn

(x , x ′) = Tr [e−βHϕm(x)ϕn(x
′)]/Tr [e−βH ] ; (12)

with Hk = ωk(d
†
1,kd1,k + d†

2,kd2,k) .

(m, n) =⇒ Right (R) or Left (L) Rindler wedges.

• Using these green functions, we calculate Pj , E .
– For parallel motion: E = 0 =⇒ Entanglement harvesting not

possible.

– For anti-parallel motion: E ̸= 0 =⇒ Entanglement harvesting

possible.

• Dimensionless quantities:

σ = β∆E , α = a/∆E and ∆E 2CJ/λ2δ(0) = ∆E 2
(
|Iε| −

√
IAIB

)
.
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Effect of background temperature-I: αA = αB
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Figure 1: In (1 + 1) and (1 + 3) dimensionless concurrence quantity

∆E 2
(
|Iε| −

√
IAIB

)
is plotted with respect to the acceleration of the first

detector αA for different fixed inverse temperature of the thermal bath σ .
(D. Barman, S. Barman and B.R. Majhi, JHEP, 2021)
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Effect of background temperature-II: fixed αB (= 1)
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Figure 2: In (1 + 1) and (1 + 3) dimensionless concurrence quantity

∆E 2
(
|Iε| −

√
IAIB

)
is plotted with respect to the acceleration of the first

detector αA for different fixed inverse temperature of the thermal bath σ. The

other parameters are fixed at αB = 1. (D. Barman, S. Barman and B.R. Majhi, JHEP, 2021)
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Role of Reflecting boundaries



Systems with reflecting boundaries

• Two boundary system: B1 at

z = 0 and B2 at z = L.

• One boundary system: B1 at

z = 0.

• No boundary system.

The trajectories of the detectors uniformly accelerating along the

x-direction (Birrell, Davies, 1982)

tA = a−1
A sinh(aAτA), xA = a−1

A cosh(aAτA), yA = 0, zA = zA ;

tB = a−1
B sinh(aBτB), xB = ±a−1

B cosh(aBτB), yB = ∆y , zB = zB .(13)

where 0 < zA, zB < L.
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The Green’s functions for two-boundary system (Birrell, Davies, 1982)

GWB2
(x , x ′) = − 1

4π2

∑∞
n=−∞

(
1

(t−t′−iϵ)2−(x−x′)2−(y−y ′)2−(z−z′−2L n)2

− 1
(t−t′−iϵ)2−(x−x′)2−(y−y ′)2−(z+z′−2L n)2

)
. (14)

The term corresponds to n = 0 is the Green’s function for one-boundary

system, GWB1
(x , x ′). (Birrell, Davies, 1982)

• Using these green functions, we calculate Pj , E .
– For parallel motion: E = 0 =⇒ Entanglement harvesting not

possible.

– For anti-parallel motion: Entanglement harvesting possible.

• Dimensionless quantities:

z̄ = z∆E , L̄ = L∆E , aj/∆E and CI = CJ/2λ2δ(0).
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Results: effect of reflecting boundaries

Case-I: Both detectors are equally distanced from the z̄ = L̄/2 plane.
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Figure 3: We plotted CI = CJ/2λ
2δ(0) with respect to the dimensionless

inverse acceleration ∆E/aA: (a) for L̄ = 1.0 and (b) for L̄ = 5.0, respectively.

Different colours are used for different fixed values of z̄A with

z̄B = L̄− z̄A (∆̄y = 0.1). Here we used solid, dotted and dashed lines to

represent no boundary, single boundary and double boundary systems,

respectively. (D. Barman and B.R. Majhi, Phys. Rev. D, 2023)
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Case-II: The detectors have fixed perpendicular separation (i.e.,

z̄A = z̄B).
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Figure 4: (a) We plotted CI with respect to ∆E/aA with L̄ = 5.0 and z̄A = z̄B .

Different colours are used for different z̄A values. (b) We plotted CI with

respect to L̄ with consideration of z̄A = z̄B = L̄/2 (∆̄y = 0.1). Different colours

are used for different fixed ∆E/aA values. Here we used solid, dotted and

dashed lines to represent no boundary, single boundary and double boundary

systems, respectively. (D. Barman and B.R. Majhi, Phys. Rev. D, 2023)
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Case-III: The detector B is fixed at z̄ = 5.0 (L̄ = 10.0) and different

z̄-positions for detector A has taken.
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Figure 5: We plotted CI with respect to ∆E/aA and fixed values of z̄A. Here

we used z̄B = 5.0 and L̄ = 10.0 (∆̄y = 0.1). Different colours are used for

different z̄A values. Here we used solid, dotted and dashed lines to represent no

boundary, single boundary and double boundary systems, respectively.
(D. Barman and B.R. Majhi, Phys. Rev. D, 2023)
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Entanglement Leakage



Initially entangled system of two detectors

• Let us consider the initial state of the total system

|in⟩ = [α|gAgB⟩+ γ|eAeB⟩]⊗ |0M⟩ , (15)

with α2 + γ2 = 1.

• The initial and final density matrices up to 2nd order in λ

ρAB(ti ) =


γ2 0 0 αγ

0 0 0 0

0 0 0 0

γα 0 0 α2

 ; ρAB(tf ) =


a1 0 0 a2
0 b1 b2 0

0 c1 c2 0

d1 0 0 d2

 . (16)

where density matrix elements(P. Chowdhury, B.R. Majhi, 2021)

a1 = γ2(1− λ2P ′′
A − λ2P ′′

B) , b1 = γγλ2P ′′
B , b2 = γγλ2X ⋆

AB = c⋆1 ,

a2 = γα(1− λ2MA − λ2MB) = d⋆
1 , c2 = γγλ2P ′′

A , d2 = α2 . (17)
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Spontaneous entanglement leakage

P ′′
j =

∫ ∫
dτjdτ

′
j e

−i∆E(τj−τ ′
j )GW (x ′j , xj) = Pj(−∆E ) ;

Mj =
∫ ∫

dτjdτ
′
j e

i∆E(τj−τ ′
j )θ(τj − τ ′j )(GW (x ′j , xj) + GW (xj , x

′
j )) ;

XAB =
∫ ∫

dτAdτ
′
B e i∆E(τ ′

B−τA)GW (x ′B , xA) = PAB(−∆E ). (18)

• P ′′
j (= Pj(−∆E )) denotes the transition probability from exited state

to ground state of j th detector.

– the detectors are static→no contribution for detector’s motion.

– spontaneous emission probability
(E.T. Akhmedov and D. Singleton, Pisma Zh. Eksp. Teor. Fiz., 2007).

• Mj contains GW (x ′j , xj) + GW (xj , x
′
j ) = ⟨0M |{ϕ(x ′j ), ϕ(xj)}|0M⟩.

– depends on the field state under consideration.

– Mj arises purely due to the vacuum fluctuation of field.

18



Expressions of the evaluated integrals

• Evaluation of the integrations yield

P ′′
j = δ(0)

2c3

√
∆E 2 −m2c4 ≡ P ′′ ;

Re(Mj) =
δ(0)
4c3

√
∆E 2 −m2c4 ≡ M ;

XAB = δ(0)
2c3

√
∆E 2 −m2c4

sin( d
c

√
∆E 2−m2c4)

( d
c

√
∆E 2−m2c4)

, (19)

• If ∆E < mc2: density matrix is not valid.

• If ∆E = mc2: density matrix remains same.

• If ∆E > mc2: density matrix has evolved.
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Negativity, a measure of entanglement

• Negativity: sum of all negative eigenvalues of partial transposed

density matrix.

• partial transposition of ρAB :

ρTB

AB =


a1 0 0 b2
0 b1 a2 0

0 d1 c2 0

c1 0 0 d2

 (20)

• Eigenvalues:

λ1,2 = γ2λ2P ′′ ± αγ(1− 2λ2M) ,

λ3,4 = γ2(1− 2λ2P ′′), α2 . (21)

• The negativity, a measure of entanglement is given by

N = max
{
0, |αγ| − λ2(γ2P ′′ + 2|αγ|M)

}
. (22)

• Entanglement between the detectors decreases with time.
(D. Barman, A. Choudhury, B. Kad, and B.R. Majhi, Phys. Rev. D, 2023)
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Conclusion



Conclusion

• No influence on entanglement harvesting for parallel motion of the

detectors.

• Background temperature introduces several interesting noticeable

features which are absent when the temperature is zero.

• For αA = αB , in both (1 + 1)D and (1 + 3)D, background

temperature suppress entanglement harvesting when acceleration is

less than αC . After the critical acceleration harvesting is higher for

higher temperature.

• For fixed acceleration of detector B, there is single critical point in

(1 + 1)D and multiple critical acceleration points in (1 + 3)D.

• In presence of mirrors, the entanglement gets suppressed if any one

or both of the detectors are near the boundary or boundaries. The

suppression decreases when they are away from the boundary or

boundaries.

• One of the important observations is – the double boundary

concurrence degrades more whenever there is a degradation.

The same also holds for the enhancement of harvesting.
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Conclusions

• For two initially entangled-static detectors, interacting eternally with

background field, lose entanglement.

– similar to the open quantum systems, where the environment

causes decoherence for the quantum system2.

• The leakage is unavoidable even for other type of switching function

related to interaction.

• in black hole spacetimes

– A Minkowski observer is equivalent to a freely falling observer in

black hole spacetime.

– two initially entangled qubits’ communication fades during their

free fall towards the horizon.

• Further studies may help us in understanding the black hole

information paradox problem.

2W.H. Zurek; Phys. Today 44; 10; 36 (1991); Rev. Mod. Phys. 75; 715 (2003).
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Thank You

Any Questions?
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Additional Slides: Concurrence3

Concurrence:

C(ρAB) = Max{0, λMax − λ2 − λ3 − λ4}

where λ’s are square-root of eigenvalues of

ρAB ρ̃AB

with

ρ̃AB = σy ⊗ σy ρ
⋆
AB σy ⊗ σy

3S. A. Hill and W. K. Wootters; PRL; 1997; W. K. Wootters; PRL; 1998.
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Density matrix elements: Reflecting boundaries

• The transition probability:

Pj =
λ2δ(0)

2

(
e
2π∆E

a −1

) ∑∞
n=−∞

(
sin( 2∆E

a sinh−1(|L a n|))
|L a n|

√
|L a n|2+1

− sin( 2∆E
a sinh−1(|a(zj+L n)|))

|a(zj+L n)|
√

|a(zj+L n)|2+1

)
. (23)

• The entangling term (anti-parallel motion):

E(∆E ) = −λ2

2

δ
(

∆E
aA

−∆E
aB

)
sinh

(
π ∆E

aA

) ∑∞
n=−∞

(
sin

(
∆Eσn,−

aA

)
sinh(σn,−) −

sin
(

∆Eσn,+
aA

)
sinh(σn,+)

)
(24)

with

σn,± = log
(
Mn,± +

√
M2

n,± − 1
)
; Mn,± = 1

2

(
aA
aB

+ aB
aA

+ aAaB{∆y2 + (zA ± zB − 2Ln)2}
)
.
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Density matrix elements: Thermal (1 + 1)D

• The transition probability:

Pj = λ2δ(0) π
2∆E jaj

1

sinh π∆Ej

aj

[
e
−π∆Ej

aj

1−e−β∆Ej + e
π∆Ej

aj

eβ∆Ej−1

]
, . (25)

• The entangling term (anti-parallel motion):

E(∆E ) = −λ2
δ
(

∆EB−∆EA
√

aAaB

)
√

sinh π∆Ẽ
aA

sinh π∆Ẽ
aB

π

∆Ẽ
√
aAaB

[
e
π∆Ẽ
2

(
1
aB

− 1
aA

)
1−e−β∆Ẽ

+ e
−π∆Ẽ

2

(
1
aB

− 1
aA

)
eβ∆Ẽ−1

− sinh
{

π∆Ẽ
2

(
1
aB

− 1
aA

)}]
(26)
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Density matrix elements: Thermal (1 + 3)D

• The transition probability:

Pj = λ2δ(0) 1
2πa2j

[
e
−π∆Ej

aj

1−e−β∆Ej +
e
π∆Ej

aj

eβ∆Ej−1

]
Υ
(
∆E j , aj , aj

)
, , . (27)

with

Υ (ε̄, aj , al) =
∫∞
0

kp dkp K
[
i ε̄
aj
,
kp
aj

]
K
[
i ε̄
al
,
kp
al

]
. (28)

• The entangling term (anti-parallel motion):

E(∆E ) = −λ2δ
(

∆EB−∆EA
√
aAaB

)
Υ(∆Ẽ ,aB ,aA)

πaAaB

[
e
π∆Ẽ
2

(
1
aB

− 1
aA

)
1−e−β∆Ẽ

+ e
−π∆Ẽ

2

(
1
aB

− 1
aA

)
eβ∆Ẽ−1

− sinh
{

π∆Ẽ
2

(
1
aB

− 1
aA

)}]
, (29)
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