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MOTIVATION

» Due to quantum correction, the Einstein-Maxwell theory will
turn into a higher derivative theory (HDT):

1
/d4:c V= ( —R — 2 F, F" + AL)
+ caRF F* 4 csRy FPFY ) 4 coRyypo FPVFP7
- crFy P F, FP7 4 cgF,, FVPF, FoH.

» Could we have some non-perturbative principle to constrain
the Wilson coefhicients for the higher derivative terms?
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MOTIVATION

» One such example is the Weak Gravity Conjecture (WGC) by
requiring the gauge force must be stronger than gravity.

» WGC is motivated by distinguishing the swampland in string
landscape. This requires the number of light charged particles are
thermodynamically finite [Arkani-Hamed et al, "06].

» Since extremely BH behaves like elementary particles, it requires
the quantum effect to change the extremal condition from M=Q
to M<Q so that most of the extremal BHs can decay. (x = 2)




EXTREMAL RN BLACK HOLE

» In Einstein-Maxwell, the metric of an RN BH:

ds? = — e*dt? + e’ dr? + r’(d6? + sin® 0dgp?),
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MOTIVATION

» When applying to WGC for the extremal RN BH of the above
HDTs, one arrive [Kats et al, *06]
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» This non-perturbative constraint can be used to compare with some
perturbative results [Cheung, '14 & '18]. For example, the one-loop of

Einstein-Maxwell yields only nonzero positive ¢, [Deser, '74]. But for
minimally coupled scalar and spinor, one has [Bastianell;, 08 & '12]
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MOTIVATION

» In this talk, we will invoke another non-perturbative principle
to constrain the HDTs. It requires no violation of weak cosmic
censorship conjecture (WCCC).

» WCCC states that a gravitational curvature singularity should
be hidden inside a black hole horizon [penrose, *691.

» In Einstein-Maxwell theory, a Kerr-Newman black hole will
not have naked curvature singularity if its mass M, charge Q

and angular momentum J=aM satisfying (k = 2)
M2 > a2+ Q2

» The equality hold for extremal BH.



MOTIVATION

» However, in HDTs the extremality bound for RN BH becomes

m > \/7|q| (1— —c0>

» If one follow Wald’s gedanken experiment of destroying an
extremal BH by throwing the charged matter, this turns the
original BH into a one-parameter family solutions with

m(t) = m + tom and g(t) = g + 70qg. Up to the first order of

7 < 1, the extremality bound turns into a discriminant
condition for WCCC:

om — 2(14_4&)5(120.
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WALD’S GEDENKEN EXPERIMEN'T

» Can we overspin or overcharge to destroy a black hole by
throwing matter of large spin or charge into it?

» Consider throwing a charged particle of mass m and charge e
into an extremal Reissner-Nordstrom (RN) black hole with

M=Q (x = 2). The energy of the particle is given by
E=—(mu, +eA,)!>eby =e with &g = (—A,£")|g =1 for extermal RN black hole.

Thus, M+E>=Q+e, impossible to overcharge.

» However, this simple argument cannot be generalized to
generic matter and does not work beyond Einstein-Maxwell
theory. Moreover, it also fails for near-extremal BH.



HUBENY’S ARGUMEN'T

» Hubeny (1999) argued that it is possible to overcharge a near-
extremal black hole. Parametrizing the near-extremality by

¢ =\/1 _ 0*/M2.

» The EM potential now is &, = Q/r, ~ 1 — ¢, and the energy of
the charged particle E > (1 — ¢) e. Thus, we have

M+E—(Q+e)~—ee+e*M/2

» [t seems that we can overcharge to destroy a black hole if
e > eM/2. However, this is not the whole story since the e?
effect is involved for the argument without also including it in

estimating E.



» In 2017, Sorce & Wald gave a general proof of WCCC based on the
variational identities, which is the generalization of BH’s first law when
considering the falling-in of the generic matters up to 2nd order

variation.
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Including 2nd order effect by

Sorce & Wald (2017)

» In this talk, we will focus only on the WCCC for extremal RN BHs in
HDTs.

Hubeny’s argument (1999)



DESTROY A EXTREMAL BH: SORCE & WALD

» The charged matter falls through the event horizon of an extremal BH
in the finite time interval. The perturbed initial data is chosen to
vanish near the horizon.
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» Since the BH is extremal, the process causes no gravitational & EM
radiation, the black hole mechanics is manifested as a variational
identity 5M_(I)H/H€abcd6ja - _/HeebcdgadTea, Where @H = - (é'aAa) |’H

» and éM and 6Q = [, eaadi* are the changes of mass and charge of BH
caused by in-falling matter which obeys NEC:

» Using €t = —4n&eqg and NEC, the variation Id turns into

M —DydQ > 0.



WALD’S DERIVATION OF VARIATION 1D

» Start with Lagrangian 4-form L. = L(¢)e with ¢ = (g,,,A,), its variation

yields 6L = E(¢)o¢ + dO(¢, 6¢), where E(¢p) = 0 is EoM, and O(¢, 6¢) is
the symplectic 3-form.

» For a vector £¢, define the conserved Noether current J £ = OP, < éqb) — ié:L.
Since dJ £ = 0, J = a’Qg + g‘dCd with the 3-form constraint C¢ = 0
whenever E(¢) = 0.

> If L) =0 (atimeline Killing symmetry), one can show 6J; = di-O(¢, 6¢).
Together with 0J: = do6Q; + ¢“0C,, one arrives variational Id

> OM = J
0X=00

> UsedI (5Ca)bcd — Gebcd(éTea + Aaéje)

[0Q; — i:O0(¢, 6¢)] = — J €epeds (O a +A0/°)
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FORMAL RESULTS FOR HD'I'S

. 5L
» Define some notations: g« = _—_ g =
5Rabcd 5Fab

» Symplectic 3-form: ®,,,, =e¢,,,, CE?V 8g,, — 258, V,EP + 2EPLSA,)
» Noether charge: (Q,),,, = €y, (—2VEP4 + EPAYE, — EP4V| &)

» Constraints: (C%,,, = €., (2qu"€qu,€1 +4V,V,E/" + 2QENFI — 249V ESt — gedL>

» E.g., L=Lj+ ) cL,
> 5Ly, = 6g,(ES)™e + 6A(E}) e + dO,,

(Ef)ab — <_Rab+%gabR _gabv2_|_ V(avi))) F2 . 2RFaCFbC,

g (EN? =4V, (RF?) .

> (Q)ap = €apea (FVIES = 26 VIF? + 2RFIA &) |
Eép = —¢ <5Tab5gab — j“éAa)

> Cgcda - = 2€ebcd(Ef )ea o Gebcd(Ezl4 )eAa e -0
Cbcda = €eobed (T a +] Aa)
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DESTROY AN EXTREMAL KERR-NEWMAN BH IN EINSTEIN-MAXWELL?

» We now see the case of Maxwell-Einstein ( set k = 2 ):
» Extremality bound: M 2> (a*+ Q) witha :=J/IM.

» Its variation gives the condition for WCCC:

J
MM > = (M5J - JSM) + Q50 = %(5] — asM) + 050.

» On the other hand, Variational Id & NEC yields
a MQ

’ (I)H — )
M? + a? M? + a?
inequality is coincident with the condition for WCCC.

» For extremal BH, Q = then the above



DESTROY AN EX'TREMAL RN BH IN HIGHER DERIVATIVE THEORIES?

» First, note that the horizon of the extremal BH in HDT is
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» The gauge potential is changed, too:
q 2q3 5C6Kml"
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» Combine both we can evaluate the chemical potential at
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» recall our notations: m=M/4r, q=Q/4r and k = 871Gy



DESTROY AN EX'TREMAL RN BH IN HIGHER DERIVATIVE THEORIES?

» Recall the variation inequality: oM — ®xoQ >0

» Using the formal results we can evaluatedM anddoQ for the
extremal charged BH in HDT.

> It is easy to see that the higher derivative corrections fall oft quickly
and will not change the ADM mass, i.e, 0M =0M.

> Similar, we find that Q= / €abod 57 = 6Q + O(c2).
H
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» Combine the above we arrive: ém—4/— (1 + 5—2) 5q >0
K q

. . 2 4c .
» Compare with extremality bound: ém —4 /= <1 + 5—2) 5q > 0, we obtain
K q

the condition for WCCC: ¢, > ¢, or
10c, 3¢5 3¢
+=2+2<0
K K K
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KEY RESULT

» Our key result: condition for WCCC to hold in HDT —
10c, 3¢5 3¢
+—=+—<0
K K K

C, +4c; +

» Note that ¢; and ¢g do not appear in the above, this means
that there is no constraint on the box diagram of QED.

» The 1-loop result of Einstein-Maxwell violates the WCCC.

» However, the 1-loop EFT for the minimally coupled scalar and

. . cs ¢ 4c¢; 2
spinor violate the WGC: ¢, +4c;+=2+2+—+=—2 >0, but do not

K K K2 K2
violate WCCC.
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DISCUSSIONS & CONCLUSIONS

» Unlike the WGC bound, our WCCC bound are not invariant
under field redefinitions: g, — g,, + 5g,, with
5, = 1R, + 1,8, R + r;xF, F’ + rixg, F* . However, this may be turned
into a requirement to fix how the matter couples to gravity

and Maxwell.

» Moreover, it is easy to see that the extremality contour is
coincident with the constant-area contour:

Suppose F(M, Q, A) = 0 so that the tangent vector satisfies
Naked singularity region e%\vi‘f%fi/// aMF A M + aMF AQ + aAF A A — 0

Since the 3rd term vanishes for either constant-area (AA = 0) or
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/o enattne s — . extremality (04F = O for degenerate horizons), so

""" = (dQ/dM) , = (dQ/dM) = — 0y F/0yF.
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DISCUSSIONS & CONCLUSIONS

» However, in HDT the constant-area is not the same as constant-
entropy, it remains to see how WCCC based on variational Id can
be related to the generalized second law of BH mechanics.

» In summary: based on the WCCC condition derived from the
formalism of Sorce & Wald, we have constrained the Wilson
coefficients of HDT, and may serve as a new principle to
distinguish the part of swampland in the string landscape.

» One may try to derive the WCCC condition for near-extremal BH
in HDT, which may give more subtle constraints due to the GW
radiation and self-forces.

» It is also interesting to compare with other constraints from WGC
or general principle of QFT & quantum gravity.



Nature abhors a naked singularity!

-Stephen Hawking ‘91



