CONSTRAINTS ON LOW ENERGY EFFECTIVE THEORIES FROM WEAK COSMIC CENSORSHIP

Feng-Li Lin (Natl. Taiwan Normal U.)

Based on 2006.08663 with

Bo Ning (Sichuan U) & Baoyi Chen, Yanbei Chen (Caltech)

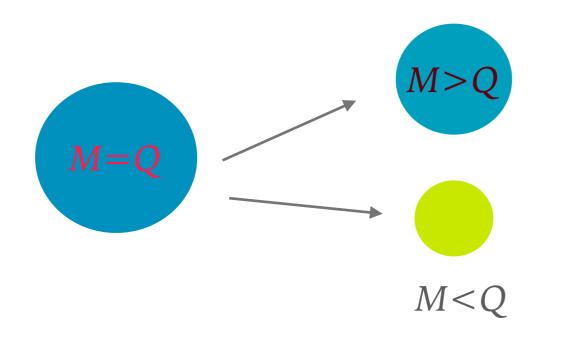
➤ Due to quantum correction, the Einstein-Maxwell theory will turn into a higher derivative theory (HDT):

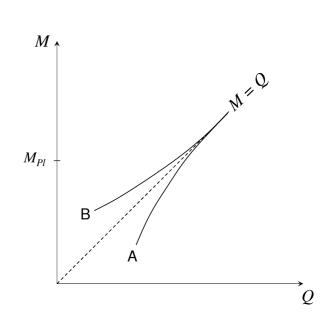
$$\begin{split} I &= \int d^4 x \, \sqrt{-g} (\frac{1}{2\kappa} R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \Delta L) \\ \Delta L &= c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \\ &+ c_4 R F_{\mu\nu} F^{\mu\nu} + c_5 R_{\mu\nu} F^{\mu\rho} F^{\nu}{}_{\rho} + c_6 R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \\ &+ c_7 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + c_8 F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \,. \end{split}$$

➤ Could we have some non-perturbative principle to constrain the Wilson coefficients for the higher derivative terms?

N.B.
$$c_1, c_2, c_3, \kappa^{-1}c_4, \kappa^{-1}c_5, \kappa^{-1}c_6, \kappa^{-2}c_7, \kappa^{-2}c_8 \ll 1$$
, with $\kappa = 8\pi G_N$

- ➤ One such example is the Weak Gravity Conjecture (WGC) by requiring the gauge force must be stronger than gravity.
- ➤ WGC is motivated by distinguishing the swampland in string landscape. This requires the number of light charged particles are thermodynamically finite [Arkani-Hamed et al, '06].
- Since extremely BH behaves like elementary particles, it requires the quantum effect to change the extremal condition from M=Q to M<Q so that most of the extremal BHs can decay. $(\kappa=2)$





EXTREMAL RN BLACK HOLE

➤ In Einstein-Maxwell, the metric of an RN BH:

$$\begin{split} ds^2 &= -e^{\nu(r)} dt^2 + e^{\lambda(r)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \\ e^{\nu^{(0)}} &= e^{-\lambda^{(0)}} = 1 - \frac{\kappa m}{r} + \frac{\kappa q^2}{2r^2}, \quad m = M/4\pi, q = Q/4\pi, \text{ and the extremality} \\ \text{bound is } m \geq \sqrt{\frac{2}{\kappa}} \|q\|. \end{split}$$

$$e^{\nu} = 1 - \frac{\kappa m}{r} + \frac{\kappa q^2}{2r^2} + c_2 \left(\frac{\kappa^3 m q^2}{r^5} - \frac{\kappa^3 q^4}{5r^6} - \frac{2\kappa^2 q^2}{r^4} \right)$$

$$+ c_3 \left(\frac{4\kappa^3 m q^2}{r^5} - \frac{4\kappa^3 q^4}{5r^6} - \frac{8\kappa^2 q^2}{r^4} \right)$$

$$+ c_4 \left(-\frac{6\kappa^2 m q^2}{r^5} + \frac{4\kappa^2 q^4}{r^6} + \frac{4\kappa q^2}{r^4} \right)$$

$$+ c_5 \left(\frac{4\kappa^2 q^4}{5r^6} - \frac{\kappa^2 m q^2}{r^5} \right)$$

$$+ c_6 \left(\frac{\kappa^2 m q^2}{r^5} - \frac{\kappa^2 q^4}{5r^6} - \frac{2\kappa q^2}{r^4} \right)$$

$$+ c_7 \left(-\frac{4\kappa q^4}{5r^6} \right) + c_8 \left(-\frac{2\kappa q^4}{5r^6} \right) + \mathcal{O}(c_i^2) .$$

► [Kats et al, '06]

Then, the extremity bound becomes

$$m \ge \sqrt{\frac{2}{\kappa}} |q| \left(1 - \frac{4}{5q^2} c_0\right)$$

$$c_0 \equiv c_2 + 4c_3 + \frac{c_5}{\kappa} + \frac{c_6}{\kappa} + \frac{4c_7}{\kappa^2} + \frac{2c_8}{\kappa^2}$$

➤ When applying to WGC for the extremal RN BH of the above HDTs, one arrive [Kats et al, '06]

$$c_0 \equiv c_2 + 4c_3 + \frac{c_5}{\kappa} + \frac{c_6}{\kappa} + \frac{4c_7}{\kappa^2} + \frac{2c_8}{\kappa^2} > 0$$

This non-perturbative constraint can be used to compare with some perturbative results [Cheung, '14 & '18]. For example, the one-loop of Einstein-Maxwell yields only nonzero positive c_2 [Deser, '74]. But for minimally coupled scalar and spinor, one has [Bastianelli, '08 & '12]

$$\mathcal{L}_{\text{spinor}} \propto 5RF^2 - 26R_{\mu\nu}F^{\mu\rho}F^{\nu}{}_{\rho} + 2R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$$

$$\mathcal{L}_{\text{scalar}} \propto -\frac{5}{2}RF^2 - 2R_{\mu\nu}F^{\mu\rho}F^{\nu}{}_{\rho} - 2R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$$

$$\frac{c_4}{}$$

- ➤ In this talk, we will invoke another non-perturbative principle to constrain the HDTs. It requires no violation of weak cosmic censorship conjecture (WCCC).
- ➤ WCCC states that a gravitational curvature singularity should be hidden inside a black hole horizon [Penrose, '69].
- ► In Einstein-Maxwell theory, a Kerr-Newman black hole will not have naked curvature singularity if its mass M, charge Q and angular momentum J=aM satisfying ($\kappa=2$)

$$M^2 \ge a^2 + Q^2.$$

➤ The equality hold for extremal BH.

➤ However, in HDTs the extremality bound for RN BH becomes

$$m \ge \sqrt{\frac{2}{\kappa}} |q| \left(1 - \frac{4}{5q^2} c_0 \right)$$

If one follow Wald's gedanken experiment of destroying an extremal BH by throwing the charged matter, this turns the original BH into a one-parameter family solutions with $m(\tau) = m + \tau \delta m$ and $q(\tau) = q + \tau \delta q$. Up to the first order of $\tau \ll 1$, the extremality bound turns into a discriminant condition for WCCC:

$$\delta m - \sqrt{\frac{2}{\kappa}} \left(1 + \frac{4c_0}{5q^2} \right) \delta q \ge 0.$$

WALD'S GEDENKEN EXPERIMENT

- ➤ Can we overspin or overcharge to destroy a black hole by throwing matter of large spin or charge into it?
- ► Consider throwing a charged particle of mass m and charge e into an extremal Reissner-Nordstrom (RN) black hole with M=Q ($\kappa=2$). The energy of the particle is given by

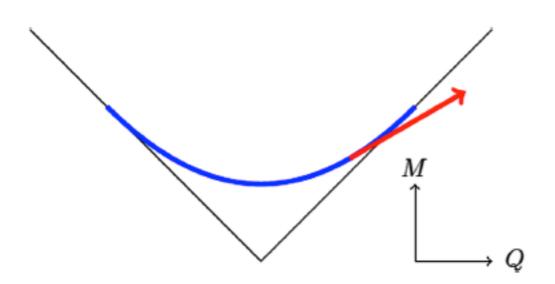
 $E = -(mu_{\mu} + eA_{\mu})\xi^{\mu} \ge e\Phi_H = e$ with $\Phi_H = (-A_{\mu}\xi^{\mu})|_H = 1$ for external RN black hole. Thus, M+E>=Q+e, impossible to overcharge.

➤ However, this simple argument cannot be generalized to generic matter and does not work beyond Einstein-Maxwell theory. Moreover, it also fails for near-extremal BH.

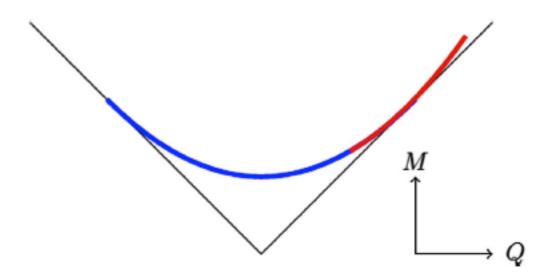
HUBENY'S ARGUMENT

- ► Hubeny (1999) argued that it is possible to overcharge a near-extremal black hole. Parametrizing the near-extremality by $\varepsilon = \sqrt{1 Q^2/M^2}$.
- The EM potential now is $\Phi_{\rm H} = Q/r_+ \simeq 1 \varepsilon$, and the energy of the charged particle $E > (1 \varepsilon) e$. Thus, we have $M + E (Q + e) \simeq -\varepsilon e + \varepsilon^2 M/2$
- ➤ It seems that we can overcharge to destroy a black hole if $e > \epsilon M/2$. However, this is not the whole story since the e^2 effect is involved for the argument without also including it in estimating E.

➤ In 2017, Sorce & Wald gave a general proof of WCCC based on the variational identities, which is the generalization of BH's first law when considering the falling-in of the generic matters up to 2nd order variation.



Hubeny's argument (1999)

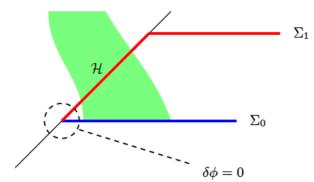


Including 2nd order effect by
Sorce & Wald (2017)

➤ In this talk, we will focus only on the WCCC for extremal RN BHs in HDTs.

DESTROY A EXTREMAL BH: SORCE & WALD

➤ The charged matter falls through the event horizon of an extremal BH in the finite time interval. The perturbed initial data is chosen to vanish near the horizon.



- Since the BH is extremal, the process causes no gravitational & EM radiation, the black hole mechanics is manifested as a variational identity $\delta \mathcal{M} \Phi_{\rm H} \int_{\mathcal{H}} \epsilon_{abcd} \, \delta j^a = \int_{\mathcal{H}} \epsilon_{ebcd} \, \xi^a \delta T^e_a$, where $\Phi_{\rm H} := (\xi^a A_a) |_{\mathcal{H}}$
- ► and $\delta \mathcal{M}$ and $\delta \mathcal{Q} \equiv \int_{\mathcal{H}} \epsilon_{abcd} \delta j^a$ are the changes of mass and charge of BH caused by in-falling matter which obeys NEC:
- ► Using $\epsilon_{ebcd} = -4n_{[e}\tilde{\epsilon}_{bcd]}$ and NEC, the variation Id turns into

$$\delta \mathcal{M} - \Phi_{\rm H} \delta \mathcal{Q} \geq 0$$

WALD'S DERIVATION OF VARIATION ID

- > Start with Lagrangian 4-form $\mathbf{L} = L(\phi)\epsilon$ with $\phi = (g_{ab}, A_a)$, its variation yields $\delta \mathbf{L} = \mathbf{E}(\phi)\delta\phi + d\mathbf{\Theta}(\phi, \delta\phi)$, where $\mathbf{E}(\phi) = 0$ is EoM, and $\mathbf{\Theta}(\phi, \delta\phi)$ is the symplectic 3-form.
- For a vector ξ^a , define the conserved Noether current $\mathbf{J}_{\xi} = \mathbf{\Theta}(\phi, \mathcal{L}_{\xi}\phi) i_{\xi}\mathbf{L}$. Since $d\mathbf{J}_{\xi} = 0$, $\mathbf{J}_{\xi} = d\mathbf{Q}_{\xi} + \xi_d\mathbf{C}^d$ with the 3-form constraint $\mathbf{C}^d = 0$ whenever $\mathbf{E}(\phi) = 0$.
- ► If $\mathcal{L}_{\xi}\phi = 0$ (a timeline Killing symmetry), one can show $\delta \mathbf{J}_{\xi} = di_{\xi}\mathbf{\Theta}(\phi, \delta\phi)$. Together with $\delta \mathbf{J}_{\xi} = d\delta \mathbf{Q}_{\xi} + \xi^a \delta \mathbf{C}_a$, one arrives variational Id

► Used: $(\delta \mathbf{C}_a)_{bcd} := \epsilon_{ebcd} (\delta T^e{}_a + A_a \delta j^e)$

FORMAL RESULTS FOR HDTS

- ► Define some notations: $E^{abcd} \equiv \frac{\delta L}{\delta R_{abcd}}$, $E_F^{ab} \equiv \frac{\delta L}{\delta F_{ab}}$
- > Symplectic 3-form: $\Theta_{b_2b_3b_4} = \epsilon_{ab_2b_3b_4} (2E^{abcd} \nabla_d \delta g_{bc} 2\delta g_{bc} \nabla_d E^{abcd} + 2E_F^{ab} \delta A_b)$
- Noether charge: $(\mathbf{Q}_{\xi})_{b_3b_4} = \epsilon_{abb_3b_4} \left((-2\nabla_d E^{abcd} + E_F^{ab} A^c) \xi_c E^{abcd} \nabla_{[c} \xi_{d]} \right)$
- ➤ Constraints: $(\mathbf{C}^d)_{b_2b_3b_4} = \epsilon_{eb_2b_3b_4} \left(2E^{pqre}R_{pqr}^{\ \ d} + 4\nabla_f \nabla_h E^{efdh} + 2E_F^{eh}F_h^d 2A^d \nabla_h E_F^{eh} g^{ed}L \right)$
- \blacktriangleright E.g., $L = L_0 + \sum_i c_i L_i$

$$(E_4^g)^{ab} = \left(-R^{ab} + \frac{1}{2} g^{ab} R - g^{ab} \nabla^2 + \nabla^{(a} \nabla^{b)} \right) F^2 - 2R F^{ac} F_b^{\ c} \,,$$

- $(E_4^A)^a = 4 \nabla_b \left(R F^{ab} \right) .$
- $\qquad \qquad (Q_{\xi}^4)_{ab} = \epsilon_{abcd} \left(F^2 \nabla^d \xi^c 2 \xi^c \nabla^d F^2 + 2 R F^{cd} A_e \xi^e \right)$
- $\qquad C_{bcda}^4 = -2\epsilon_{ebcd}(E_4^g)^e_{\ a} \epsilon_{ebcd}(E_4^A)^e A_a$

$$\mathbf{E}\delta\phi = -\epsilon \left(\frac{1}{2}T^{ab}\delta g_{ab} + j^a\delta A_a\right)$$
$$C_{bcda} = \epsilon_{ebcd} \left(T^e_{\ a} + j^e A_a\right)$$

- \blacktriangleright We now see the case of Maxwell-Einstein (set $\kappa=2$):
- ightharpoonup Extremality bound: $M^2 \ge (a^2 + Q^2)$ with a := J/M.
- ➤ Its variation gives the condition for WCCC:

$$M\delta M \ge \frac{J}{M^3}(M\delta J - J\delta M) + Q\delta Q = \frac{a}{M}(\delta J - a\delta M) + Q\delta Q.$$

- > On the other hand, Variational Id & NEC yields $\delta M \Omega_{\rm H} \delta J \Phi_{\rm H} \delta Q \geq 0$
- For extremal BH, $Ω_H = \frac{a}{M^2 + a^2}$, $Φ_H = \frac{MQ}{M^2 + a^2}$, then the above inequality is coincident with the condition for WCCC.

First, note that the horizon of the extremal BH in HDT is shifted: $r_{\rm H} = \frac{m\kappa}{2} + \frac{4}{5m} \left(c_2 + 4c_3 + \frac{10c_4}{\kappa} + \frac{c_5}{\kappa} + \frac{c_6}{\kappa} - \frac{16c_7}{\kappa^2} - \frac{8c_8}{\kappa^2} \right)$

➤ The gauge potential is changed, too:

$$A_t = -\frac{q}{r} + \frac{2q^3}{5r^5} \left(c_5 \kappa + 6c_6 \kappa - \frac{5c_6 \kappa mr}{q^2} + 8c_7 + 4c_8 \right)$$

➤ Combine both we can evaluate the chemical potential at

horizon:
$$\Phi_{H} := -(\xi^{a}A_{a})|_{H} = \sqrt{\frac{2}{\kappa}} \left(1 + \frac{4c'_{0}}{5q^{2}}\right)$$
 where $c'_{0} = -\frac{10c_{4}}{\kappa} - \frac{2c_{5}}{\kappa} - \frac{2c_{6}}{\kappa} + \frac{4c_{7}}{\kappa^{2}} + \frac{2c_{8}}{\kappa^{2}}.$

recall our notations: $m \equiv M/4\pi$, $q \equiv Q/4\pi$ and $\kappa = 8\pi G_N$

DESTROY AN EXTREMAL RN BH IN HIGHER DERIVATIVE THEORIES?

- ► Recall the variation inequality: $\delta \mathcal{M} \Phi_H \delta \mathcal{Q} \ge 0$
- ► Using the formal results we can evaluate $\delta \mathcal{M}$ and $\delta \mathcal{Q}$ for the extremal charged BH in HDT.
- The It is easy to see that the higher derivative corrections fall off quickly and will not change the ADM mass, i.e, $\delta \mathcal{M} = \delta M$.
- ► Similar, we find that $\delta Q \equiv \int_{\mathcal{H}} \epsilon_{abcd} \, \delta j^a = \delta Q + \mathcal{O}(c_i^2).$
- ► Combine the above we arrive: $\delta m \sqrt{\frac{2}{\kappa}} \left(1 + \frac{4c_0'}{5q^2} \right) \delta q \ge 0$
- ► Compare with extremality bound: $\delta m \sqrt{\frac{2}{\kappa}} \left(1 + \frac{4c_0}{5q^2} \right) \delta q \ge 0$, we obtain the condition for WCCC: $c_0' \ge c_0$, or $c_2 + 4c_3 + \frac{10c_4}{\kappa} + \frac{3c_5}{\kappa} + \frac{3c_6}{\kappa} \le 0$.

KEY RESULT

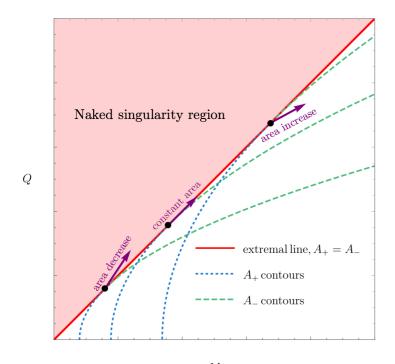
➤ Our key result: condition for WCCC to hold in HDT — $c_2 + 4c_3 + \frac{10c_4}{\kappa} + \frac{3c_5}{\kappa} + \frac{3c_6}{\kappa} \le 0$

- Note that c_7 and c_8 do not appear in the above, this means that there is no constraint on the box diagram of QED.
- ➤ The 1-loop result of Einstein-Maxwell violates the WCCC.
- ► However, the 1-loop EFT for the minimally coupled scalar and spinor violate the WGC: $c_2 + 4c_3 + \frac{c_5}{\kappa} + \frac{c_6}{\kappa} + \frac{4c_7}{\kappa^2} + \frac{2c_8}{\kappa^2} \ge 0$, but do not violate WCCC.

$$\begin{split} \mathcal{L}_{\rm spinor} &\propto 5RF^2 - 26R_{\mu\nu}F^{\mu\rho}F^{\nu}_{\rho} + 2R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma} \\ \mathcal{L}_{\rm scalar} &\propto -\frac{5}{2}RF^2 - 2R_{\mu\nu}F^{\mu\rho}F^{\nu}_{\rho} - 2R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma} \end{split}$$

DISCUSSIONS & CONCLUSIONS

- ► Unlike the WGC bound, our WCCC bound are not invariant under field redefinitions: $g_{\mu\nu} \longrightarrow g_{\mu\nu} + \delta g_{\mu\nu}$ with $\delta g_{\mu\nu} = r_1 R_{\mu\nu} + r_2 g_{\mu\nu} R + r_3 \kappa F_{\mu\rho} F_{\nu}^{\rho} + r_4 \kappa g_{\mu\nu} F^2$. However, this may be turned into a requirement to fix how the matter couples to gravity and Maxwell.
- ➤ Moreover, it is easy to see that the extremality contour is coincident with the constant-area contour:



Suppose F(M, Q, A) = 0 so that the tangent vector satisfies

$$\partial_M F \Delta M + \partial_M F \Delta Q + \partial_A F \Delta A = 0$$

Since the 3rd term vanishes for either constant-area ($\Delta A=0$) or

extremality ($\partial_A F = 0$ for degenerate horizons), so

$$(dQ/dM)_A = (dQ/dM)_{\text{ext}} = -\partial_M F/\partial_Q F.$$

DISCUSSIONS & CONCLUSIONS

- ➤ However, in HDT the constant-area is not the same as constant-entropy, it remains to see how WCCC based on variational Id can be related to the generalized second law of BH mechanics.
- ➤ In summary: based on the WCCC condition derived from the formalism of Sorce & Wald, we have constrained the Wilson coefficients of HDT, and may serve as a new principle to distinguish the part of swampland in the string landscape.
- ➤ One may try to derive the WCCC condition for near-extremal BH in HDT, which may give more subtle constraints due to the GW radiation and self-forces.
- ➤ It is also interesting to compare with other constraints from WGC or general principle of QFT & quantum gravity.

Nature abhors a naked singularity!