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MOTIVATION

➤ Due to quantum correction, the Einstein-Maxwell theory will 
turn into a higher derivative theory (HDT):  

➤ Could we have some non-perturbative principle to constrain 
the Wilson coefficients for the higher derivative terms?

N.B.  , with c1, c2, c3, κ−1c4, κ−1c5, κ−1c6, κ−2c7, κ−2c8 ≪ 1 κ = 8πGN



MOTIVATION
➤ One such example is the Weak Gravity Conjecture (WGC) by 

requiring the gauge force must be stronger than gravity. 

➤ WGC is motivated by distinguishing the swampland in string 
landscape. This requires the number of light charged particles are 
thermodynamically finite [Arkani-Hamed et al, ’06].       

➤ Since extremely BH behaves like elementary particles, it requires 
the quantum effect to change the extremal condition from M=Q 
to M<Q so that most of the extremal BHs can decay.

M=Q

M>Q

M<Q

(κ = 2)



EXTREMAL RN BLACK HOLE

➤ In Einstein-Maxwell, the metric of an RN BH: 
, 

,     , and the extremality 

bound is . 

➤

In HDT,                     

ds2 = − eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2)
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➤  [Kats et al, ’06]



MOTIVATION
➤ When applying to WGC for the extremal RN BH of the above 

HDTs, one arrive [Kats et al, ’06]  
         

➤ This non-perturbative constraint can be used to compare with some 
perturbative results [Cheung, ’14 & ’18]. For example, the one-loop of 
Einstein-Maxwell yields only nonzero positive  [Deser, ’74]. But for 
minimally coupled scalar and spinor, one has [Bastianelli, ’08 & ’12] 

c2
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MOTIVATION

➤ In this talk, we will invoke another non-perturbative principle 
to constrain the HDTs. It requires no violation of weak cosmic 
censorship conjecture (WCCC). 

➤ WCCC states that a gravitational curvature singularity should 
be hidden inside a black hole horizon [Penrose, ’69]. 

➤ In Einstein-Maxwell theory, a Kerr-Newman black hole will 
not have naked curvature singularity if its mass M, charge Q 
and angular momentum J=aM satisfying  

                             . 

➤ The equality hold for extremal BH. 

(κ = 2)

M2 � a2 +Q2



MOTIVATION

➤ However, in HDTs the extremality bound for RN BH becomes   

➤ If one follow Wald’s gedanken experiment of destroying an 
extremal BH by throwing the charged matter, this turns the 
original BH into a one-parameter family solutions with 

 and .  Up to the first order of 
, the extremality bound turns into a discriminant 

condition for WCCC: 

m(τ) = m + τδm q(τ) = q + τδq
τ ≪ 1



WALD’S GEDENKEN EXPERIMENT

➤ Can we overspin or overcharge to destroy a black hole by 
throwing matter of large spin or charge into it? 

➤ Consider throwing a charged particle of mass m and charge e 
into an extremal Reissner-Nordstrom (RN) black hole with 
M=Q ( ). The energy of the particle is given by 

Thus, M+E>=Q+e, impossible to overcharge.  

➤ However, this simple argument cannot be generalized to 
generic matter and does not work beyond Einstein-Maxwell 
theory. Moreover, it also fails for near-extremal BH.

κ = 2
E = �(muµ + eAµ)⇠

µ � e�H = e with �H = (�Aµ⇠
µ)|H = 1 for extermal RN black hole.
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HUBENY’S ARGUMENT

➤ Hubeny (1999) argued that it is possible to overcharge a near-
extremal black hole. Parametrizing the near-extremality by  

. 

➤ The EM potential now is , and the energy of 
the charged particle . Thus, we have                               

 

➤ It seems that we can overcharge to destroy a black hole if
. However, this is not the whole story since the  

effect is involved for the argument without also including it in 
estimating . 

ε = 1 − Q2/M2

ΦH = Q/r+ ≃ 1 − ε
E > (1 − ε) e

M + E − (Q + e) ≃ − εe + ε2M/2

e > ϵM/2 e2

E
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➤ In 2017, Sorce & Wald gave a general proof of WCCC based on the 
variational identities, which is the generalization of BH’s first law when 
considering the falling-in of the generic matters up to 2nd order 
variation. 

➤ In this talk, we will focus only on the WCCC for extremal RN BHs in 
HDTs.

Hubeny’s argument (1999)
Including 2nd order effect by 

Sorce & Wald (2017)



DESTROY A EXTREMAL BH: SORCE & WALD

➤ The charged matter falls through the event horizon of an extremal BH 
in the finite time interval. The perturbed initial data is chosen to 
vanish near the horizon. 

➤ Since the BH is extremal, the process causes no gravitational & EM 
radiation, the black hole mechanics is manifested as a variational 
identity                                               where  

➤ and       and                       are the changes of mass and charge of BH 
caused by in-falling matter which obeys NEC:  

➤ Using                      and NEC, the variation Id turns into 



WALD’S DERIVATION OF VARIATION ID

➤ Start with Lagrangian 4-form  with , its variation 
yields  , where  is EoM, and  is 
the symplectic 3-form. 

➤ For a vector , define the conserved Noether current . 
Since  ,   with the 3-form constraint  
whenever . 

➤ If   (a timeline Killing symmetry), one can show . 
Together with , one arrives variational Id 

➤  

➤ Used: 

L = L(ϕ)ϵ ϕ = (gab, Aa)
δL = E(ϕ)δϕ + dΘ(ϕ, δϕ) E(ϕ) = 0 Θ(ϕ, δϕ)

ξa Jξ = Θ(ϕ, ℒξϕ) − iξL
dJξ = 0 Jξ = dQξ + ξdCd Cd = 0

E(ϕ) = 0

ℒξϕ = 0 δJξ = diξΘ(ϕ, δϕ)
δJξ = dδQξ + ξaδCa

δℳ := ∫∂Σ=∞
[δQξ − iξΘ(ϕ, δϕ)] = − ∫H

ϵebcdξa(δTe
a + Aaδje)

(δCa)bcd := ϵebcd(δTe
a + Aaδje)



FORMAL RESULTS FOR HDTS

➤ Define some notations:            

➤ Symplectic 3-form:  
➤ Noether charge:   
➤ Constraints:  

➤ E.g.,   

➤  ,  

➤
    

➤  

➤                   

Eabcd ≡
δL

δRabcd
, Eab

F ≡
δL

δFab

Θb2b3b4
= ϵab2b3b4

(2Eabcd ∇dδgbc − 2δgbc ∇d Eabcd + 2Eab
F δAb)

(Qξ)b3b4
= ϵabb3b4 ((−2∇d Eabcd + Eab

F Ac) ξc − Eabcd ∇[c ξd])
(Cd)b2b3b4

= ϵeb2b3b4 (2EpqreR d
pqr + 4∇f ∇hEefdh + 2Eeh

F Fd
h − 2Ad ∇hEeh

F − gedL)
L = L0 + ∑

i

ciLi

δL4 = δgab(Eg
4 )abϵ + δAa(EA

4 )aϵ + dΘ4

(Eg
4 )ab = (−Rab +

1
2

gabR − gab∇2 + ∇(a ∇b)) F2 − 2RFacFb
c ,

(EA
4 )a = 4∇b(RFab) .

(Q4
ξ )ab = ϵabcd (F2 ∇dξc − 2ξc ∇d F2 + 2RFcd Aeξe)

C4
bcda = − 2ϵebcd(Eg

4 )e
a

− ϵebcd(EA
4 )eAa
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Eδϕ = − ϵ ( 1
2

Tabδgab + jaδAa)
Cbcda = ϵebcd (Te

a + jeAa)



DESTROY AN EXTREMAL KERR-NEWMAN BH IN EINSTEIN-MAXWELL?

➤ We now see the case of Maxwell-Einstein ( set  ): 

➤ Extremality bound:  with  

➤ Its variation gives the condition for WCCC:

.  

➤ On the other hand, Variational Id & NEC yields 
 

➤ For extremal BH, , then the above 

inequality is coincident with the condition for WCCC.

κ = 2

M2 ≥ (a2 + Q2) a := J/M .

MδM ≥
J

M3
(MδJ − JδM) + QδQ =

a
M

(δJ − aδM) + QδQ

δM − ΩHδJ − ΦHδQ ≥ 0

ΩH =
a

M2 + a2
, ΦH =

MQ
M2 + a2



DESTROY AN EXTREMAL  RN BH IN HIGHER DERIVATIVE THEORIES?

➤ First, note that the horizon of the extremal BH in HDT is 
shifted:  

➤ The gauge potential is changed, too: 
 

➤ Combine both we can evaluate the chemical potential at 
horizon:  where 

. 

➤ recall our notations:  

rH =
mκ
2

+
4

5m (c2 + 4c3 +
10c4

κ
+

c5

κ
+

c6

κ
−

16c7

κ2
−

8c8

κ2 )

At = −
q
r

+
2q3

5r5 (c5κ + 6c6κ −
5c6κmr

q2
+ 8c7 + 4c8)

ΦH := − (ξaAa) |H =
2
κ (1 +

4c′ 0

5q2 )
c′ 0 = −

10c4

κ
−

2c5

κ
−

2c6

κ
+

4c7

κ2
+

2c8

κ2



DESTROY AN EXTREMAL  RN BH IN HIGHER DERIVATIVE THEORIES?

➤ Recall the variation inequality:  

➤ Using the formal results we can evaluate        and        for the 
extremal charged BH in HDT.  

➤ It is easy to see that the higher derivative corrections fall off quickly 
and will not change the ADM mass, i.e, 

➤ Similar, we find that 

➤ Combine the above we arrive:    

➤ Compare with extremality bound: , we obtain 

the condition for WCCC: , or         

. 

δm −
2
κ (1 +

4c′ 0

5q2 ) δq ≥ 0

δm −
2
κ (1 +

4c0

5q2 ) δq ≥ 0

c′ 0 ≥ c0

c2 + 4c3 +
10c4

κ
+

3c5

κ
+

3c6

κ
≤ 0



KEY RESULT

➤ Our key result: condition for WCCC to hold in HDT — 

➤ Note that  and  do not appear in the above, this means 
that there is no constraint on the box diagram of QED.  

➤ The 1-loop result of Einstein-Maxwell violates the WCCC. 

➤ However, the 1-loop EFT for the minimally coupled scalar and 
spinor violate the WGC:  , but do not 
violate WCCC.

c7 c8

c2 + 4c3 +
c5

κ
+

c6

κ
+

4c7

κ2
+

2c8

κ2
≥ 0

c2 + 4c3 +
10c4

κ
+

3c5

κ
+

3c6

κ
≤ 0

ℒspinor ∝ 5RF2 − 26RμνFμρFν
ρ + 2RμνρσFμνFρσ

ℒscalar ∝ −
5
2

RF2 − 2RμνFμρFν
ρ − 2RμνρσFμνFρσ



DISCUSSIONS & CONCLUSIONS

➤ Unlike the WGC bound, our WCCC bound are not invariant 
under field redefinitions:  with 

 . However, this may be turned 
into a requirement to fix  how the matter couples to gravity 
and Maxwell.  

➤ Moreover, it is easy to see that the extremality contour is 
coincident with the constant-area contour:

gμν ⟶ gμν + δgμν

δgμν = r1Rμν + r2gμνR + r3κFμρFρ
ν + r4κgμνF2

Suppose  so that the tangent vector satisfies  

 

Since the 3rd term vanishes for either constant-area ( ) or  

extremality (  for degenerate horizons), so  

.

F(M, Q, A) = 0

∂MFΔM + ∂MFΔQ + ∂AFΔA = 0

ΔA = 0

∂AF = 0

(dQ /dM)A
= (dQ /dM)ext

= − ∂MF/∂QF



DISCUSSIONS & CONCLUSIONS

➤ However, in HDT the constant-area is not the same as constant-
entropy, it remains to see how WCCC based on variational Id can 
be related to the generalized second law of BH mechanics.  

➤ In summary: based on the WCCC condition derived from the 
formalism of Sorce & Wald, we have constrained the Wilson 
coefficients of HDT, and may serve as a new principle to 
distinguish the part of swampland in the string landscape.  

➤ One may try to derive the WCCC condition for near-extremal BH 
in HDT, which may give more subtle constraints due to the GW 
radiation and self-forces. 

➤ It is also interesting to compare with other constraints from WGC 
or general principle of QFT & quantum gravity. 



"Nature abhors a naked singularity!

-Stephen Hawking ‘91


