# Holographic Kibble-Zurek Mechanism with Discrete Symmetry Breaking

## Hai-Qing Zhang Beihang University

7TH INTERNATIONAL CONFERENCE ON HOLOGRAPHY AND STRING THEORY

Da Nang 22.08.2024



Zhi-Hong Li, Han-Qing Shi, HQZ, <u>2207.10995</u> Tian-Chi Ma, Han-Qing Shi, Adolfo del Campo, HQZ, <u>2406.05167</u> Han-Qing Shi, Tian-Chi Ma, HQZ, <u>2311.07017</u>

## Contents

- Brief review of Kibble-Zurek mechanism and motivations
- Holographic kinks in 1+1-dim
- Holographic domain walls 2+1-dim
- Summary

# History of KZM

- •KZM was first proposed in cosmology by Kibble in 1976.
- •Cooling of the early universe will finally result in topological defects, such as cosmic string, monopoles, vortices, domain walls ...
- However, not found to date.

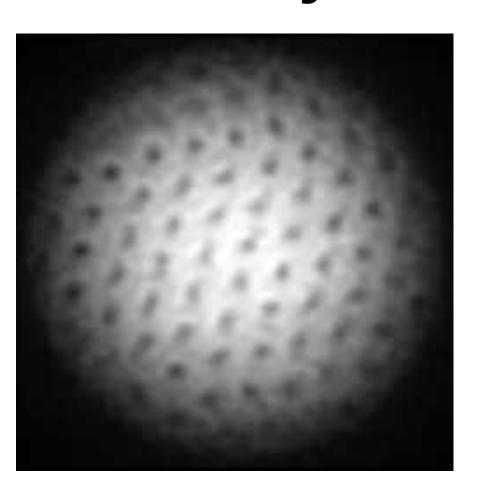


Tom W.B. Kibble (1932-2016)

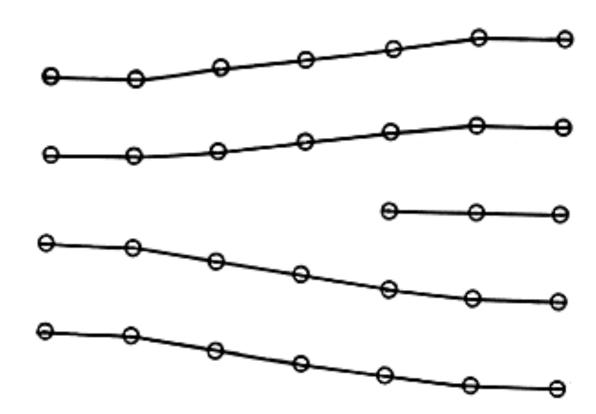


Wojciech H. Zurek

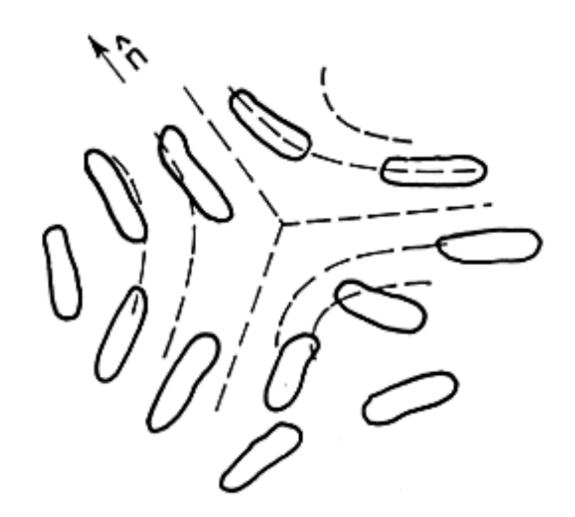
- Zurek extended this idea into superfluid in 1985.
- Phase transition from normal fluid helium to superfluid helium will induce vortices or vortex lines.
- Confirmed by various experiments.



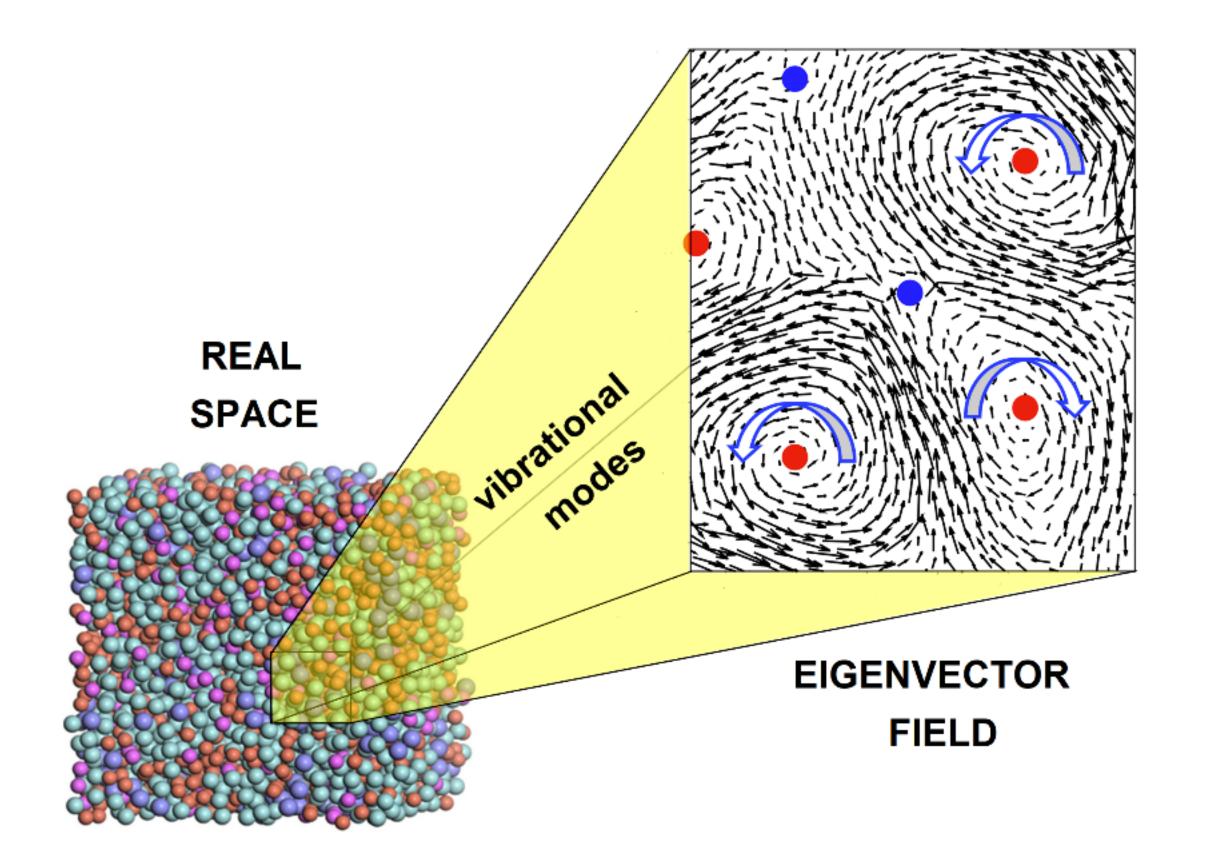
**Superfluid vortices** 



**Dislocation in crystal** 



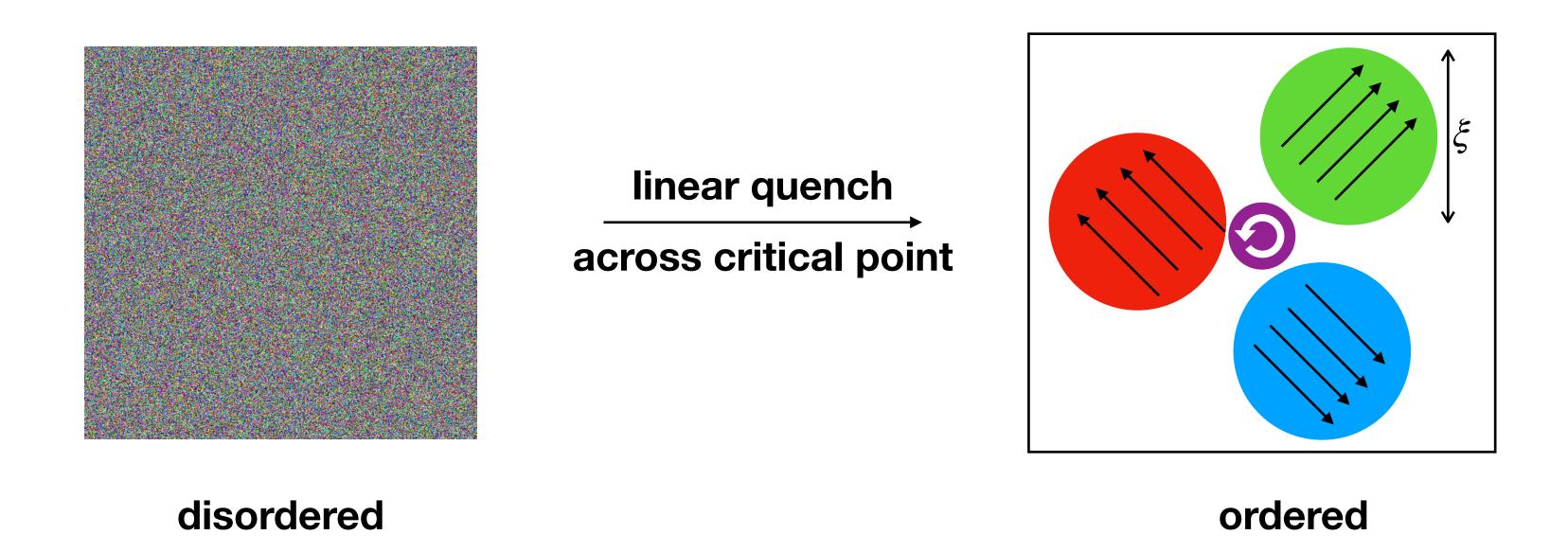
Defect lines in nematic liquid crystal



Defects in the vibration modes in glasses (Thanks to Matteo Baggioli)

 Kibble-Zurek mechanism (KZM): Topological defects will turn out, when a system with higher symmetry quenched across the critical point to a system with lower symmetry.

Vortices as topological defects in superfluid



#### KZM requires continuous phase transition

$$\xi \propto |\epsilon|^{-\nu}, \quad \tau \propto |\epsilon|^{-z\nu}. \qquad \epsilon = 1 - T/T_c = t/\tau_Q$$
 coherence relaxation length time

•KZM predicts a power law relation between the *number density* of topological defects and the quench rate  $\tau_0$ 

$$n \propto \left(\tau_Q\right)^{\frac{-(D-d)\nu}{1+z\nu}}$$

D: dimension of space

d: dimension of defects

## Confirmed by various experiments

- Liquid crystals: Chuang, et.al., Science 251 (1991) 1336; Bowick, et.al., Science 263 (1994) 943; Digal, et.al., PRL 83 (1999) 5030
- ●He-3 superfluids: Baeuerle, et.al., Nature 382 (1996) 332; Ruutu et al., Nature 382 (1996) 334
- •Thin-film superconductors: Maniv, et.al., PRL 91 (2003) 197001; PRL 104, 247002 (2010).
- •Quantum optics: Xu, et.al., PRL,112, 035701(2014)

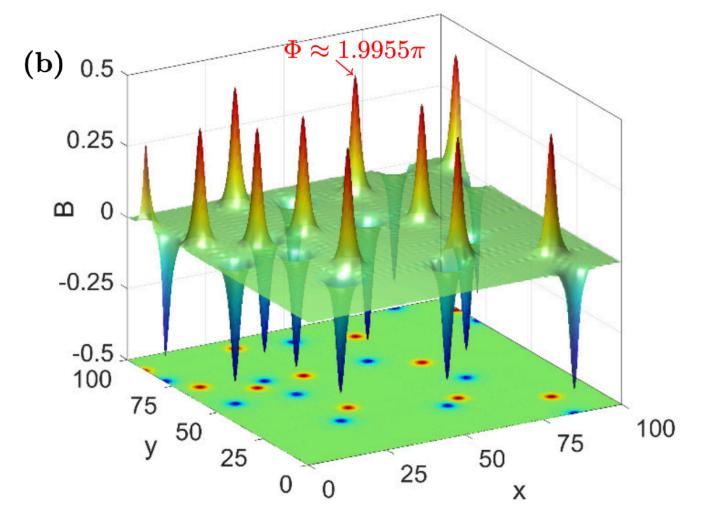
. . .

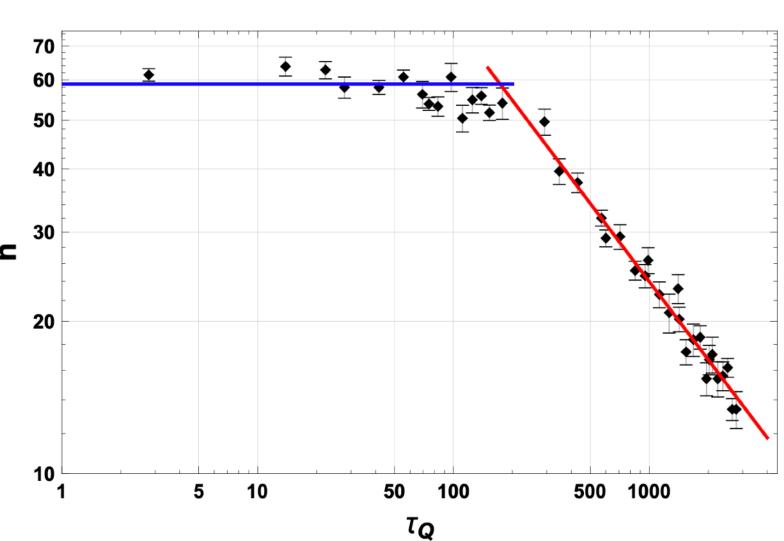
## Holographic KZM with U(1) symmetry breaking

- Winding numbers in 1+1 dim holographic superfluid: Sonner, del Campo and Zurek, 1406.2329
- Vortices in 2+1 dim holographic superfluid: Chesler, Garcia-Garcia and Liu, 1407.1862
- Magnetic vortices in 2+1 dim holographic superconductors: Zeng,
   Xia, HQZ, 1912.08332

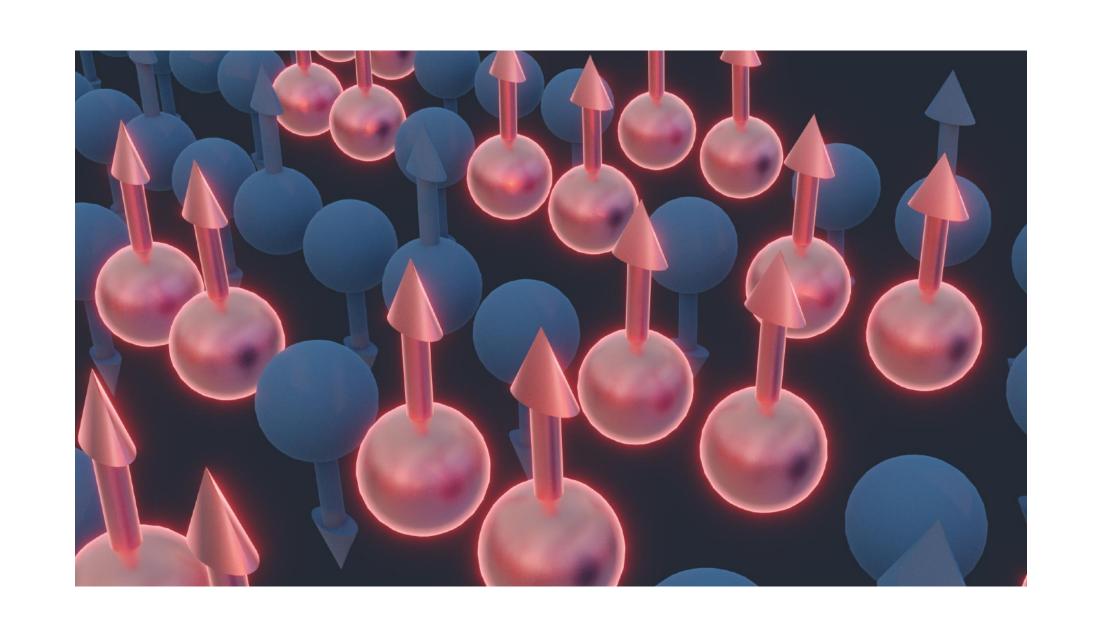
9

- - -





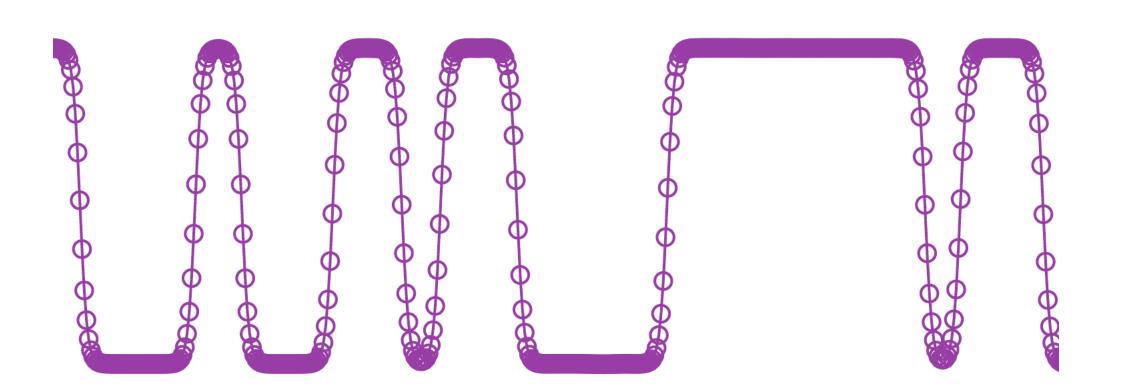
## 



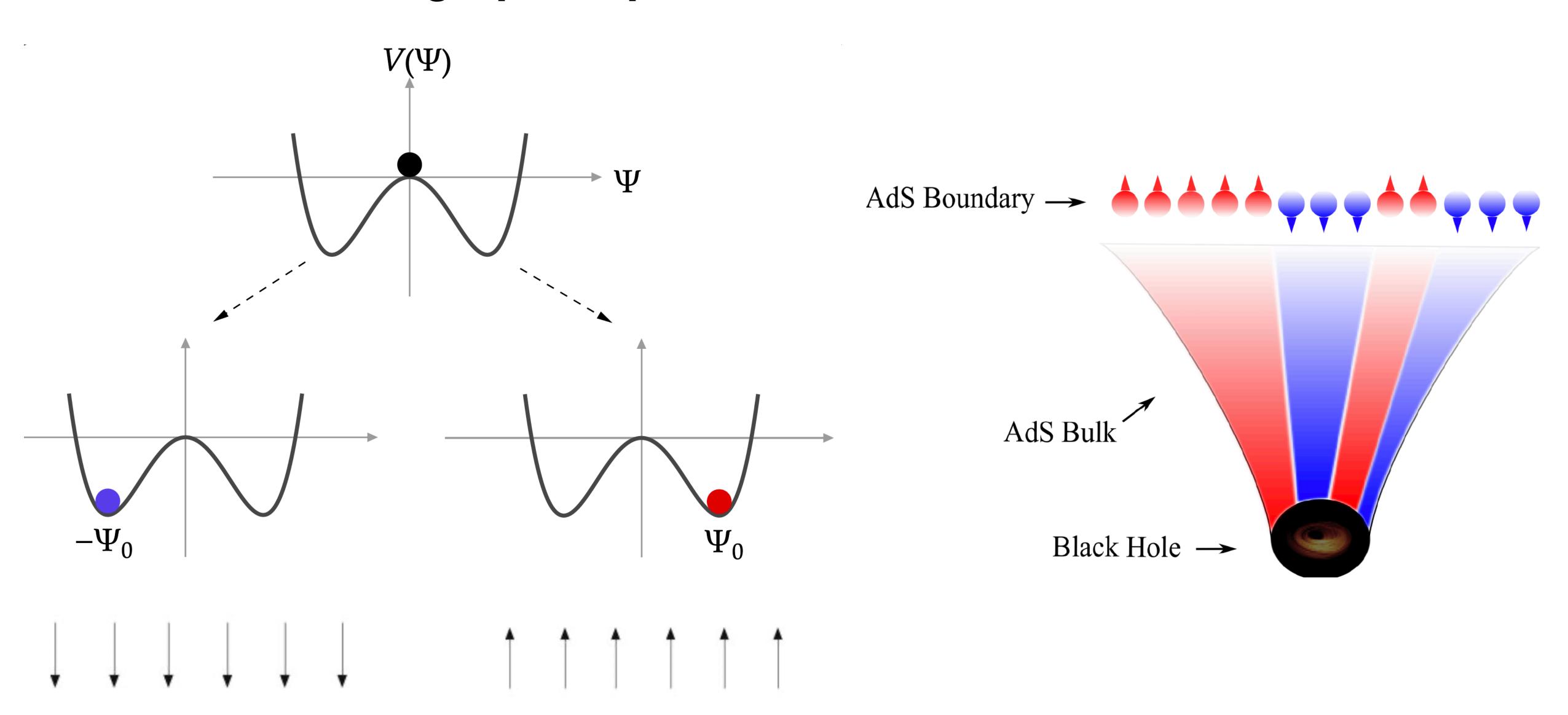
Simulate the kinks (1+1 dim) or domain wall (2+1 dim) in spin chain with strong couplings

• Need to have  $real\ scalar\ hairs\ with\ Z_2$  symmetry breaking in the bulk; i.e., kink hairs (domain wall hairs) near the horizon

# Holographic Kinks in 1+1-dim



#### Simulate a holographic spin chain



#### Start with complex scalar fields + U(1) gauge fields

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D_{\mu}\tilde{\Psi}|^2 - m^2 |\tilde{\Psi}|^2$$
$$D_{\mu} = \nabla_{\mu} - iA_{\mu}$$

Gauge-like transformation

$$\tilde{\Psi} = \Psi e^{i\lambda}, \qquad A_{\mu} = M_{\mu} + \partial_{\mu}\lambda,$$

EoMs of real functions

$$(\nabla_{\mu} - iM_{\mu})(\nabla^{\mu} - iM^{\mu})\Psi - m^{2}\Psi = 0, \qquad \nabla_{\mu}F^{\mu\nu} = 2M^{\nu}\Psi^{2}.$$

 $Z_2$  symmetry:  $+\Psi \leftrightarrow -\Psi$ 

#### Eddington-Finkelstein coordinates

$$ds^{2} = \frac{1}{z^{2}} \left[ -f(z)dt^{2} - 2dtdz + dx^{2} + dy^{2} \right] \qquad f(z) = 1 - (z/z_{h})^{3}$$

#### Ansatz of fields (turning off y-direction)

$$\Psi = \Psi(t, z, x), M_t = M_t(t, z, x), M_z = M_z(t, z, x), M_x = M_x(t, z, x)$$

#### Note: must include $M_{\scriptscriptstyle 7}$ , 4 independent equations to solve 4 fields

$$\nabla_{\mu}\nabla^{\mu}\Psi - M_{\mu}M^{\mu}\Psi - m^{2}\Psi = 0,$$

$$(\nabla_{\mu}M^{\mu})\Psi + 2M^{\mu}\nabla_{\mu}\Psi = 0,$$

$$\nabla_{\mu}F^{\mu\nu} = 2M^{\nu}\Psi^{2}.$$

$$0 \equiv \nabla_{\nu}(\nabla_{\mu}F^{\mu\nu}) \Rightarrow \nabla_{\nu}(2M^{\nu}\Psi^{2}) = 0$$

$$\Rightarrow (\nabla_{\nu}M^{\nu})\Psi + 2M^{\nu}\nabla_{\nu}\Psi = 0.$$

#### Initial condition

#### Static, x-independent: EoMs of gauge fields becomes

$$0 = -\frac{2\Psi^{2}M_{t}}{z^{2}} + f\partial_{z}^{2}M_{t},$$

$$0 = -\frac{2\Psi^{2}M_{z}}{z^{2}} + \partial_{z}^{2}M_{t},$$

$$M_{z} = \frac{M_{t}}{f}$$

$$0 = -\frac{2\Psi^{2}M_{x}}{z^{2}} + f'\partial_{z}M_{x} + f\partial_{z}^{2}M_{x}.$$

$$M_{z} = 0$$

In normal state 
$$\Psi=0$$
,  $M_t=\mu-\mu z$ ,  $M_z=(\mu-\mu z)/f$ 

### •Boundary conditions (set $m^2 = -2/L$ )

$$z \to 0 \begin{cases} \Psi \sim \Psi_1(t,x)z + \Psi_2(t,x)z^2 + \mathcal{O}(z^3), & \Psi_1 \equiv 0; \ \Psi_2 = \langle O \rangle \\ M_t \sim \mu(t,x) - \rho(t,x)z + \mathcal{O}(z^3), & \mu \text{: chemical potential } \\ \rho \text{: charge density} \\ M_z \sim a_z(t,x) + b_z(t,x)z + \mathcal{O}(z^3), & a_z = \mu \\ M_x \sim a_x(t,x) + b_x(t,x)z + \mathcal{O}(z^3) & a_x = 0 \text{: velocity of gauge field} \\ b_x \text{: current of gauge field} \end{cases}$$

$$z \rightarrow z_h \equiv 1 : M_t = 0$$

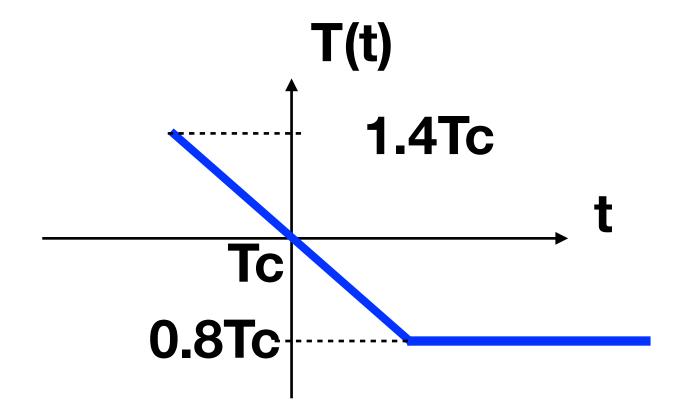
#### Other fields are finite

Quench chemical potential = quench temperature

$$T(t)/T_c = 1 - t/\tau_Q$$

$$\downarrow$$

$$\mu(t) = \mu_c/(1 - t/\tau_Q)$$



 $\mu_c pprox 4.06$  is the critical chemical potential in static case

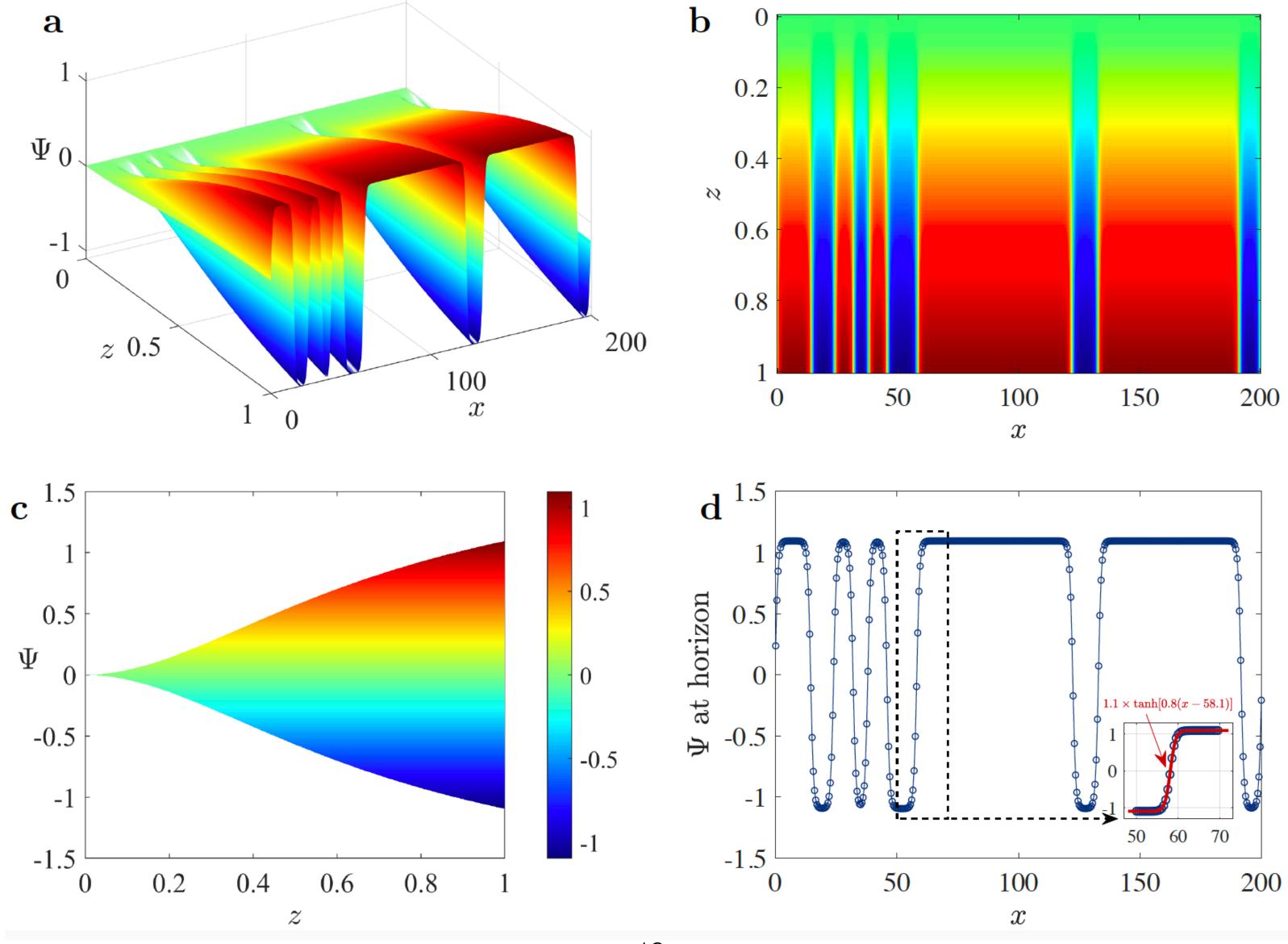
Small fluctuations of scalar field at initial time

Gaussian white noise  $\zeta(x_i, t)$ :  $\langle \zeta(x_i, t) \rangle = 0$ 

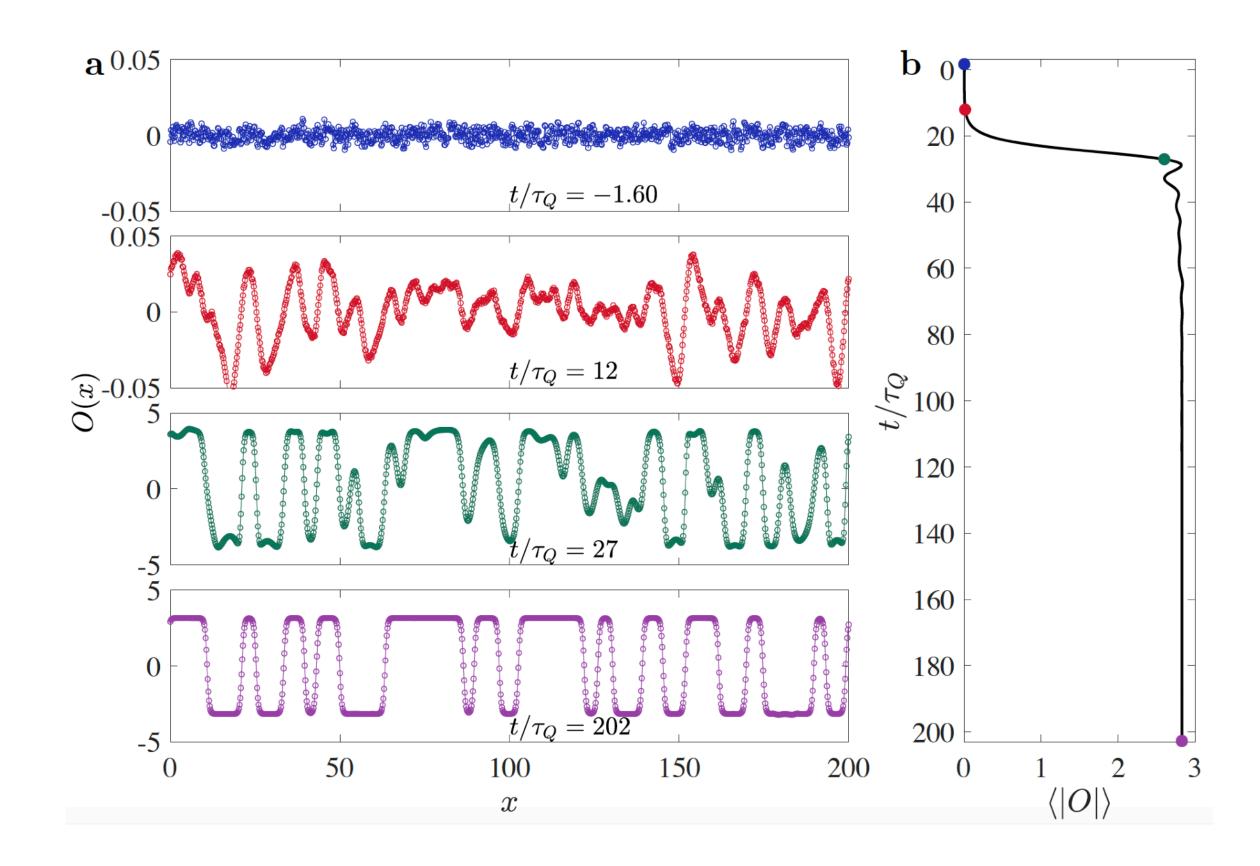
$$\langle \zeta(x_i, t) \zeta(x_j, t') \rangle = h \delta(t - t') \delta(x_i - x_j)$$

$$h = 0.001$$

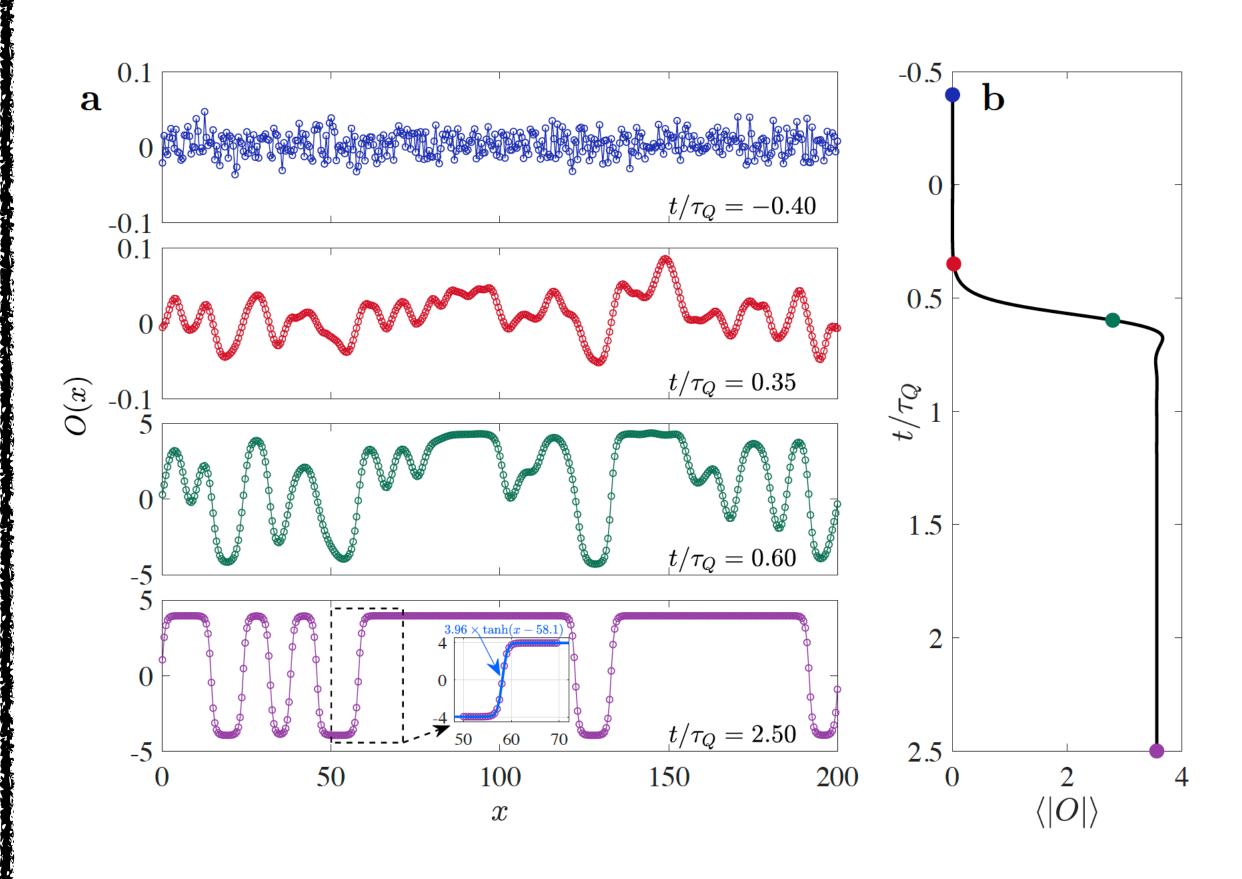
#### Kink hairs in the bulk



#### Time evolution of kinks



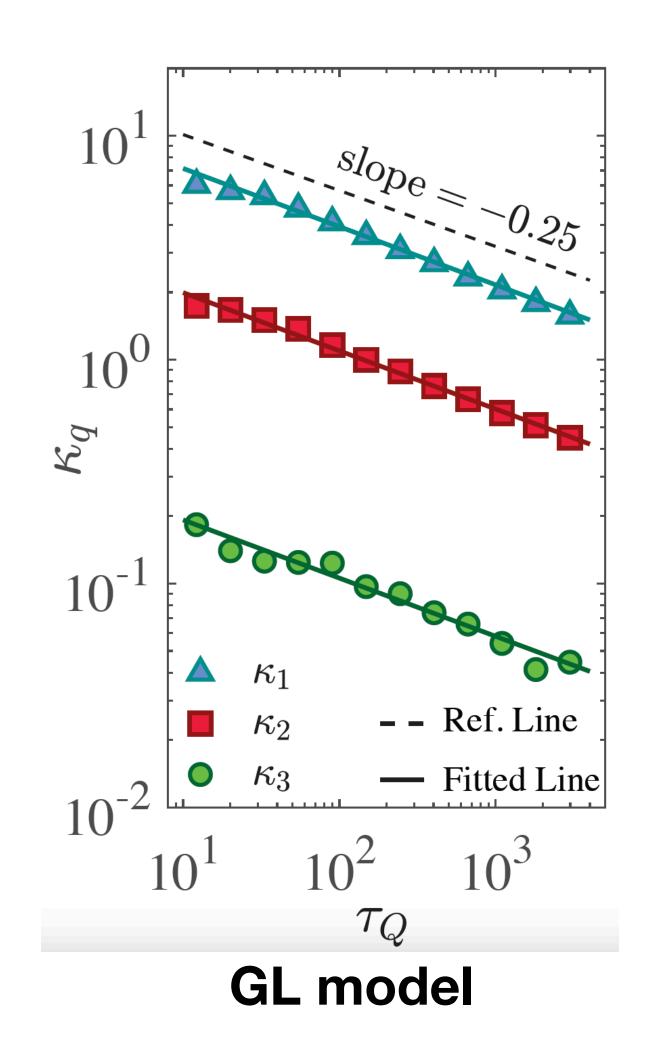
GL model

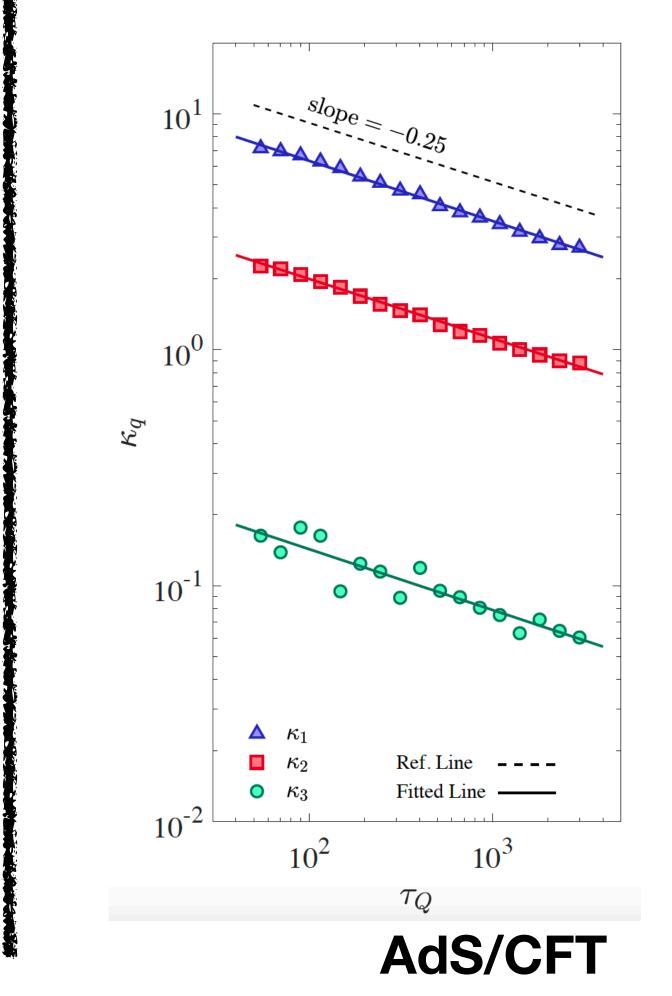


AdS boundary

#### Average kink number vs. quench rate (KZ scaling relation)

$$\langle n \rangle \propto \tau_Q^{-(D-d)\nu/(1+z\nu)}$$
  $(D=1, d=0, \nu=1/2, z=2)$   $\langle n \rangle = \kappa_1 \propto \tau_Q^{-1/4}$ 





#### Beyond KZ scaling relation

del Campo, 1806.10646

#### One dimensional transverse-field quantum Ising model

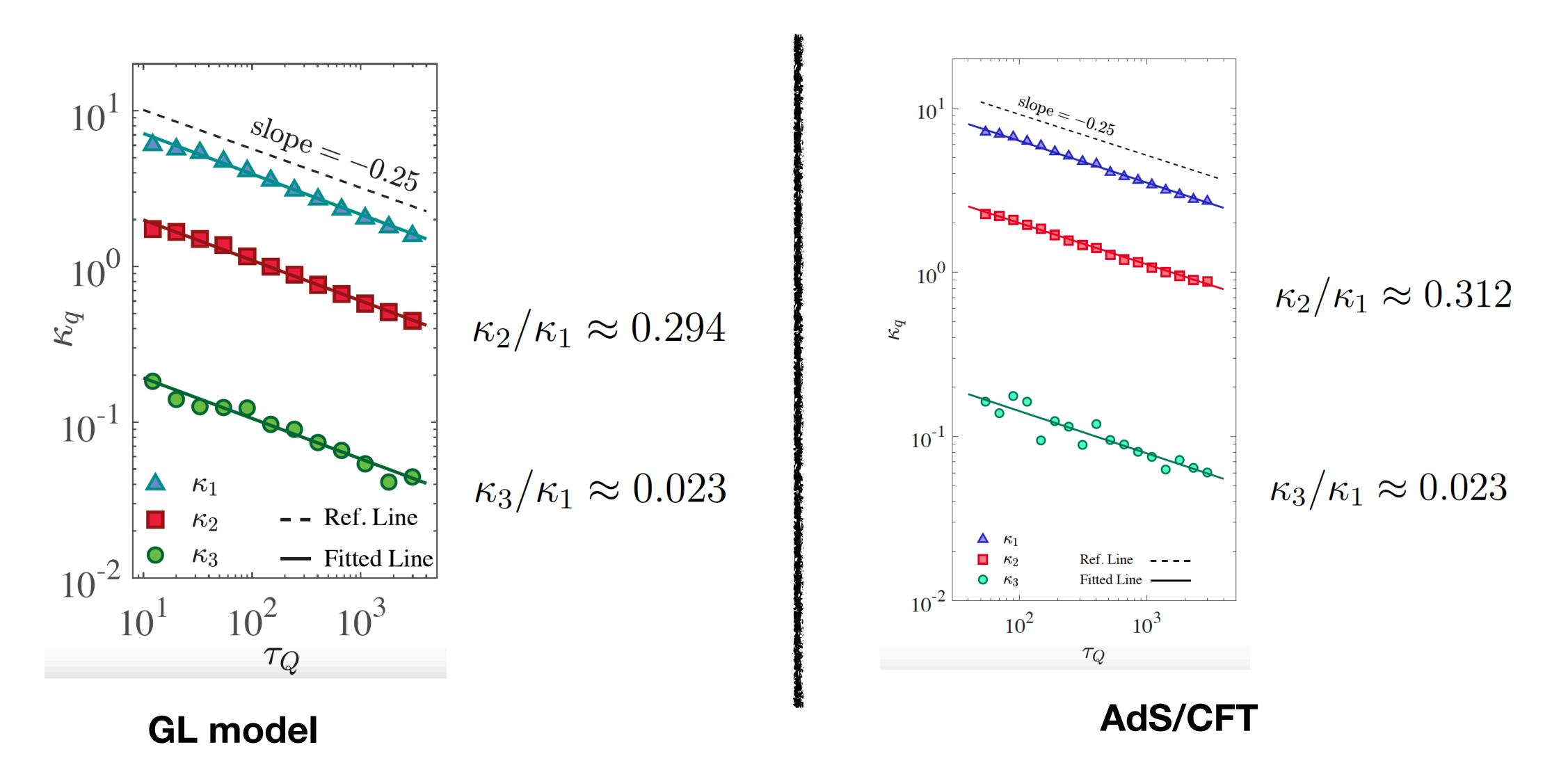
$$\mathscr{H} = -J\sum_{m=1}^{N} (\boldsymbol{\sigma}_{m}^{z}\boldsymbol{\sigma}_{m+1}^{z} + g\boldsymbol{\sigma}_{m}^{x}).$$

Poisson binomial distribution function: N-independent Bernouilli trials, at each point kink has a possibility p to form a kink, and a possibility 1-p not to form a kink

$$\kappa_2 = \langle n^2 \rangle - \langle n \rangle^2 = \frac{2 - \sqrt{2}}{2} \kappa_1 \approx 0.29 \kappa_1$$

$$\kappa_3 = \langle (n - \langle n \rangle)^3 \rangle = (1 - 3\sqrt{2} + 2/\sqrt{3}) \kappa_1 \approx 0.033 \kappa_1$$

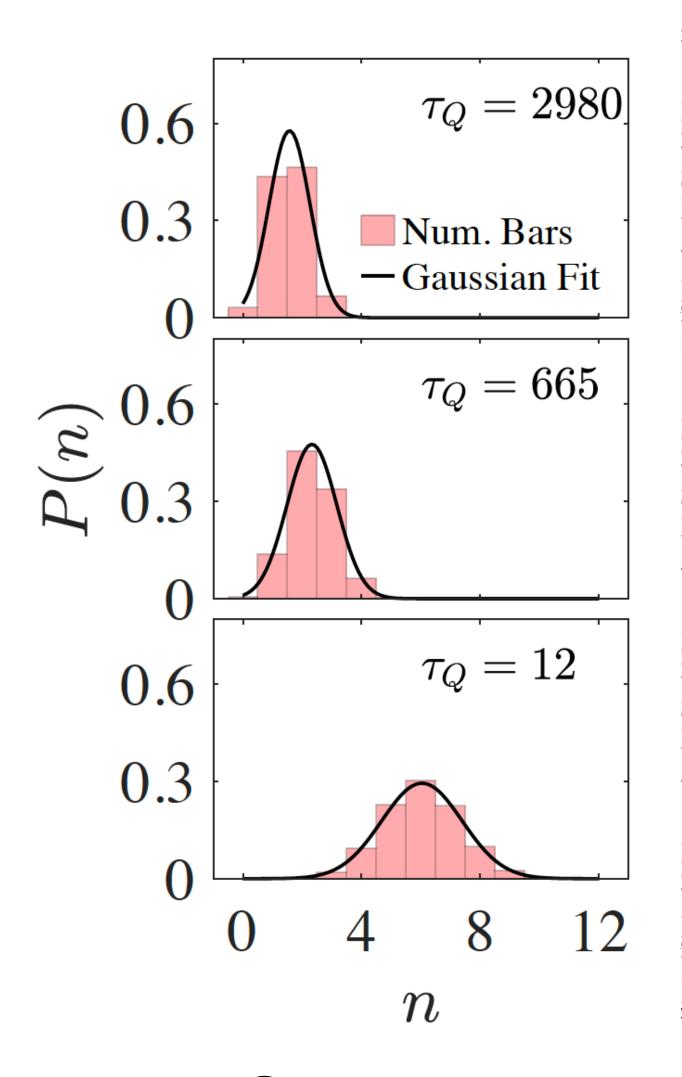
#### Beyond KZ scaling relation, cumulants vs. quench rate

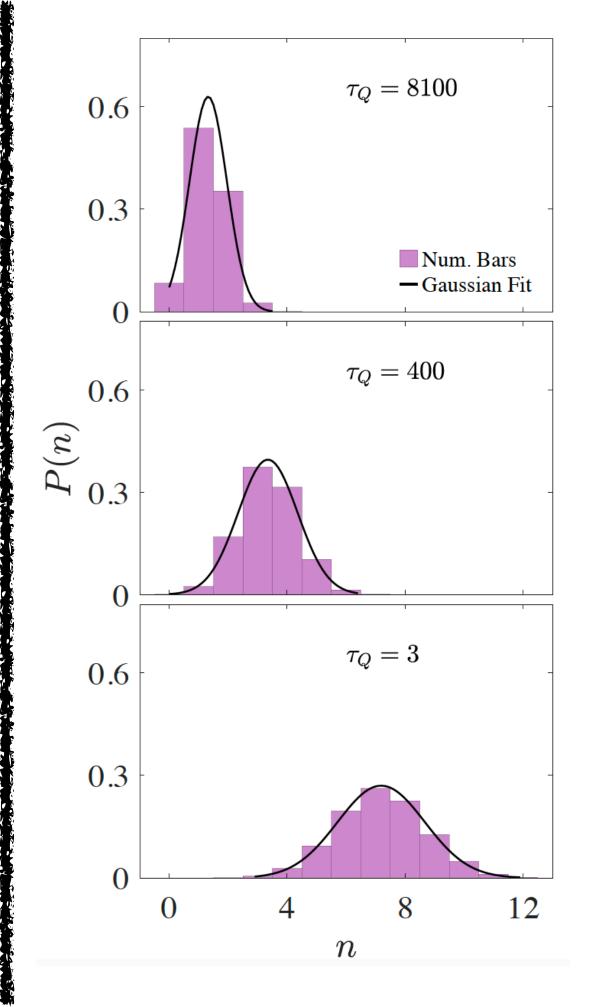


#### Gaussian distribution in large trial number

In the limit of large trial number with fixed average probability, distribution becomes Gaussian (Central limit theorem)

$$P(n) \approx \frac{1}{\sqrt{2\pi\kappa_2}} \exp\left[-\frac{(n-\langle n\rangle)^2}{2\kappa_2}\right]$$



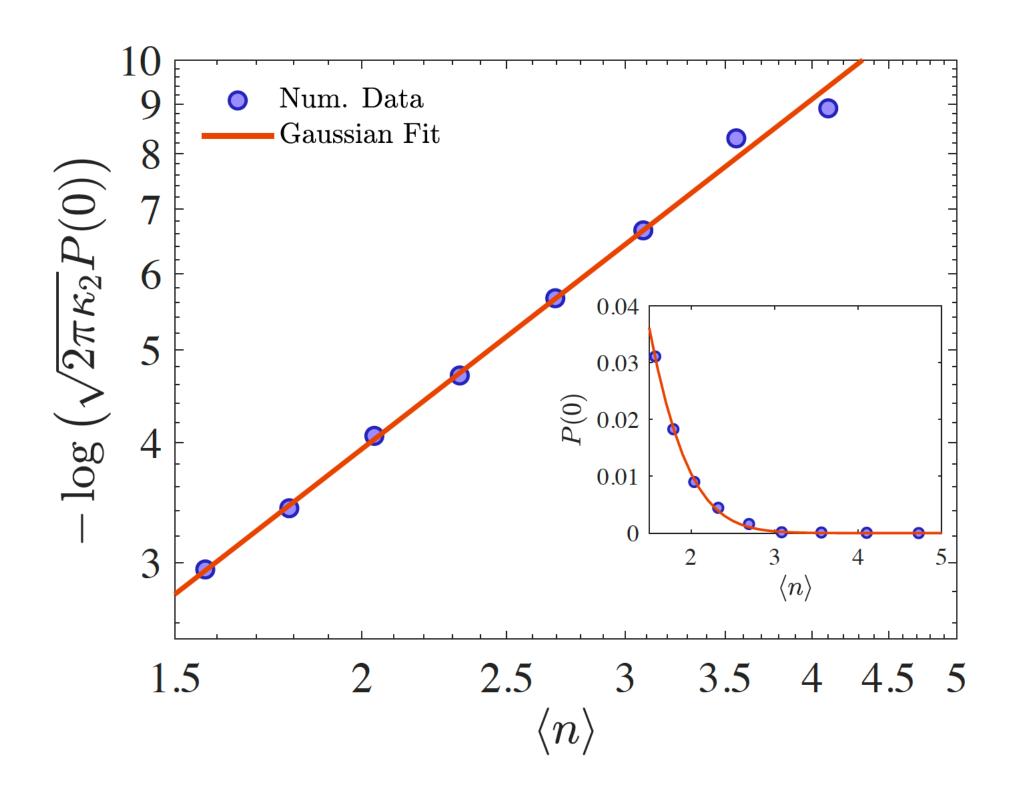


**GL** model

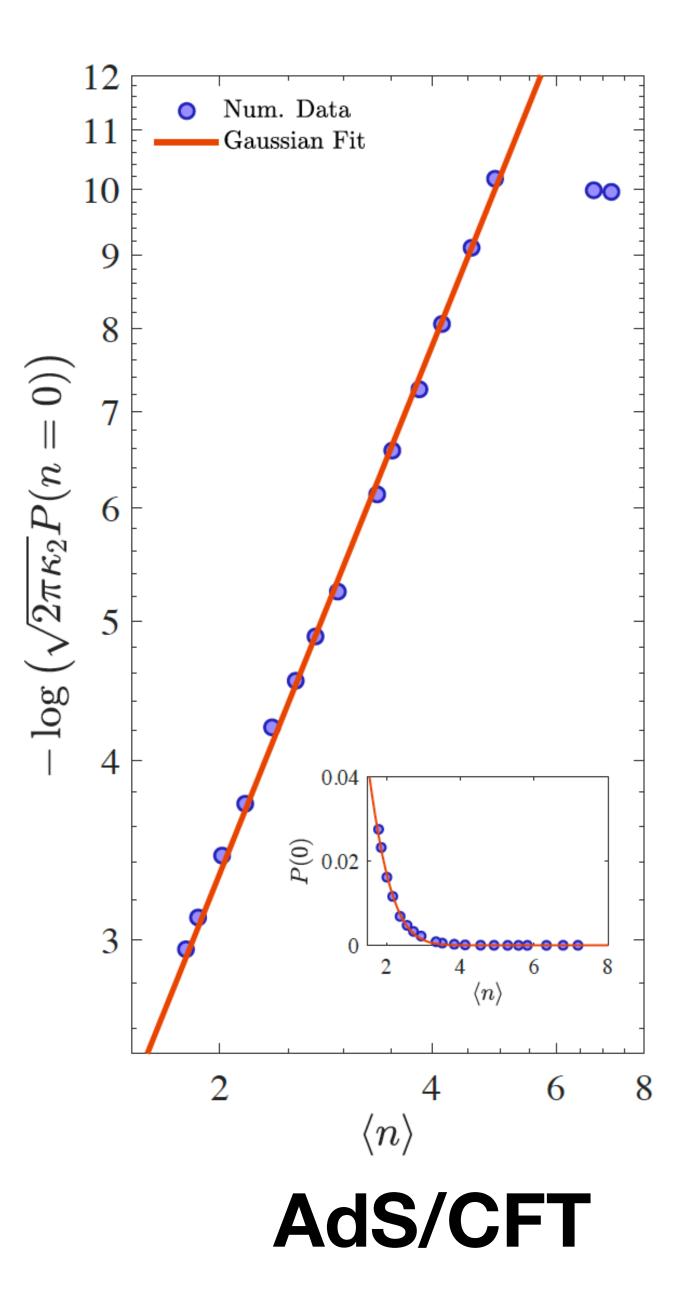
AdS/CFT

#### Adiabaticity limit: P(n=0)

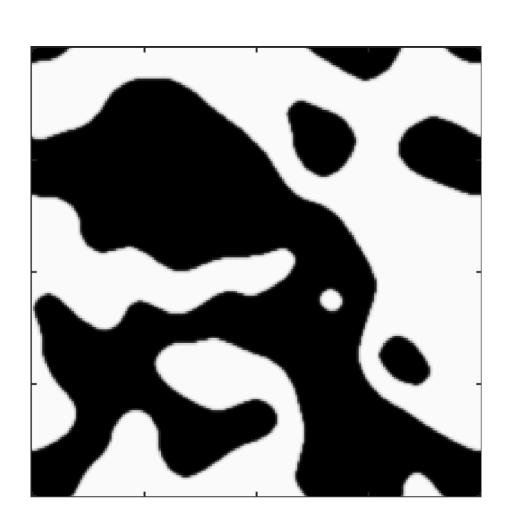
$$P(n=0) \approx \frac{1}{\sqrt{2\pi\kappa_2}} \exp^{-\frac{\langle n \rangle^2}{2\kappa_2}}$$

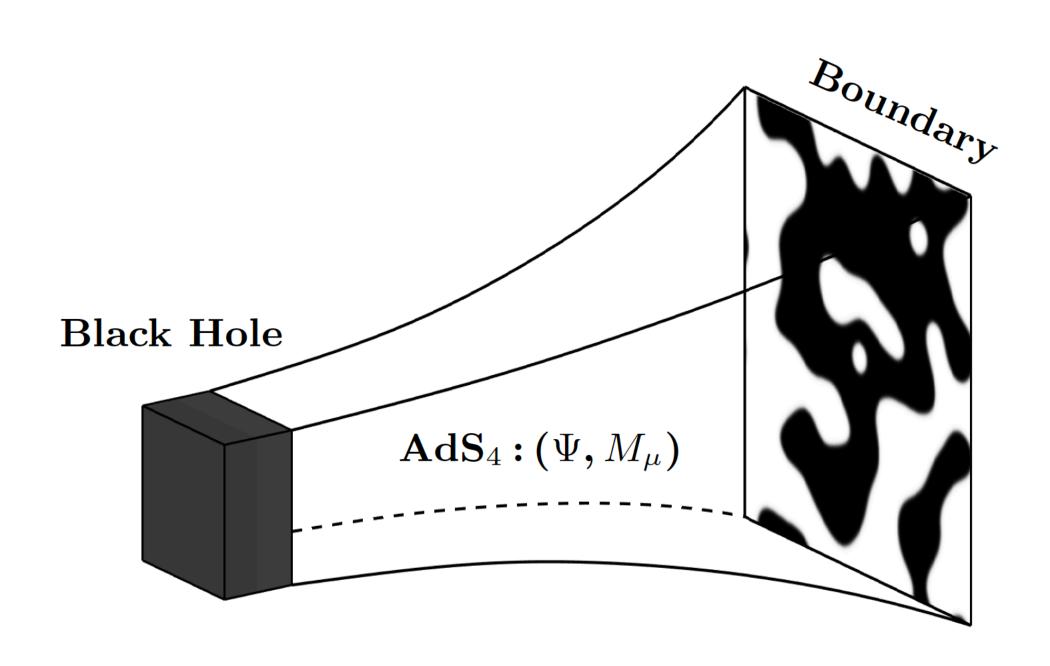


**GL** model

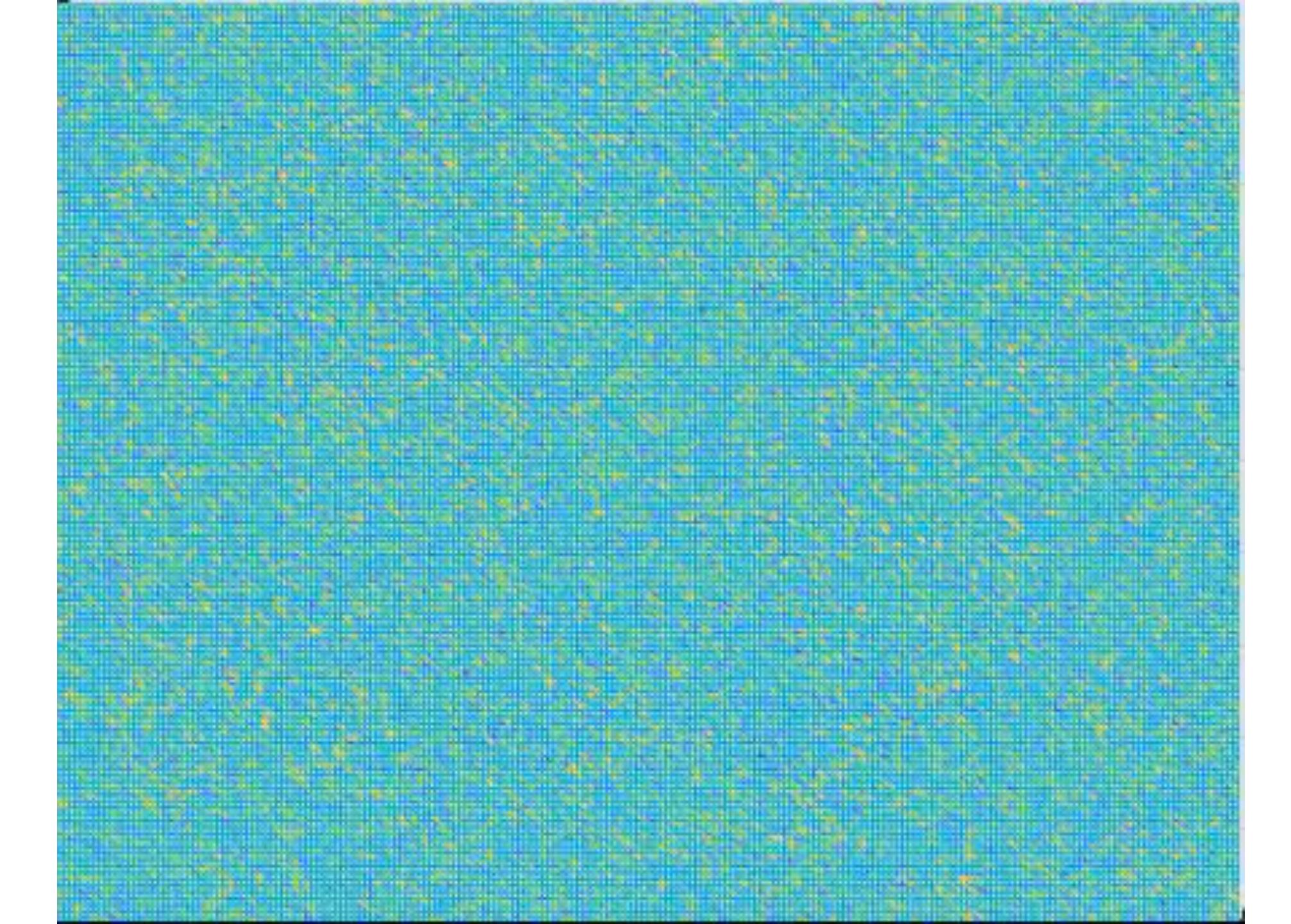


## Holographic Domain Walls in 2+1 dim





- Actions, metric, EoMs, ansats of fields, quench profile are similar to holographic kinks;
- Only difference is adding y-direction and  $M_y$  gauge field;
- Numerically complicated

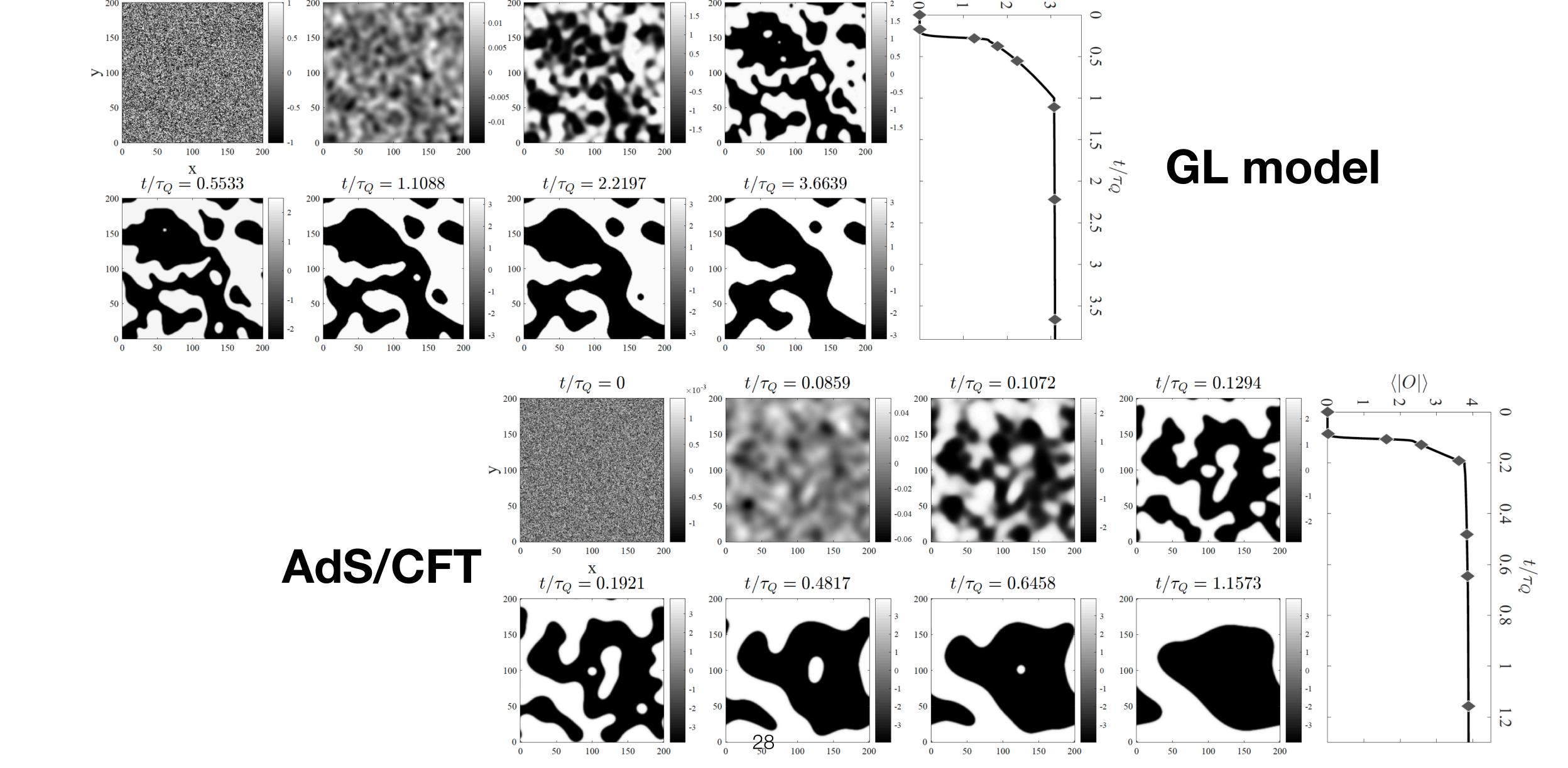


#### Time evolution of domain walls

 $t/\tau_Q = 0$ 

 $t/\tau_Q = 0.1734$ 

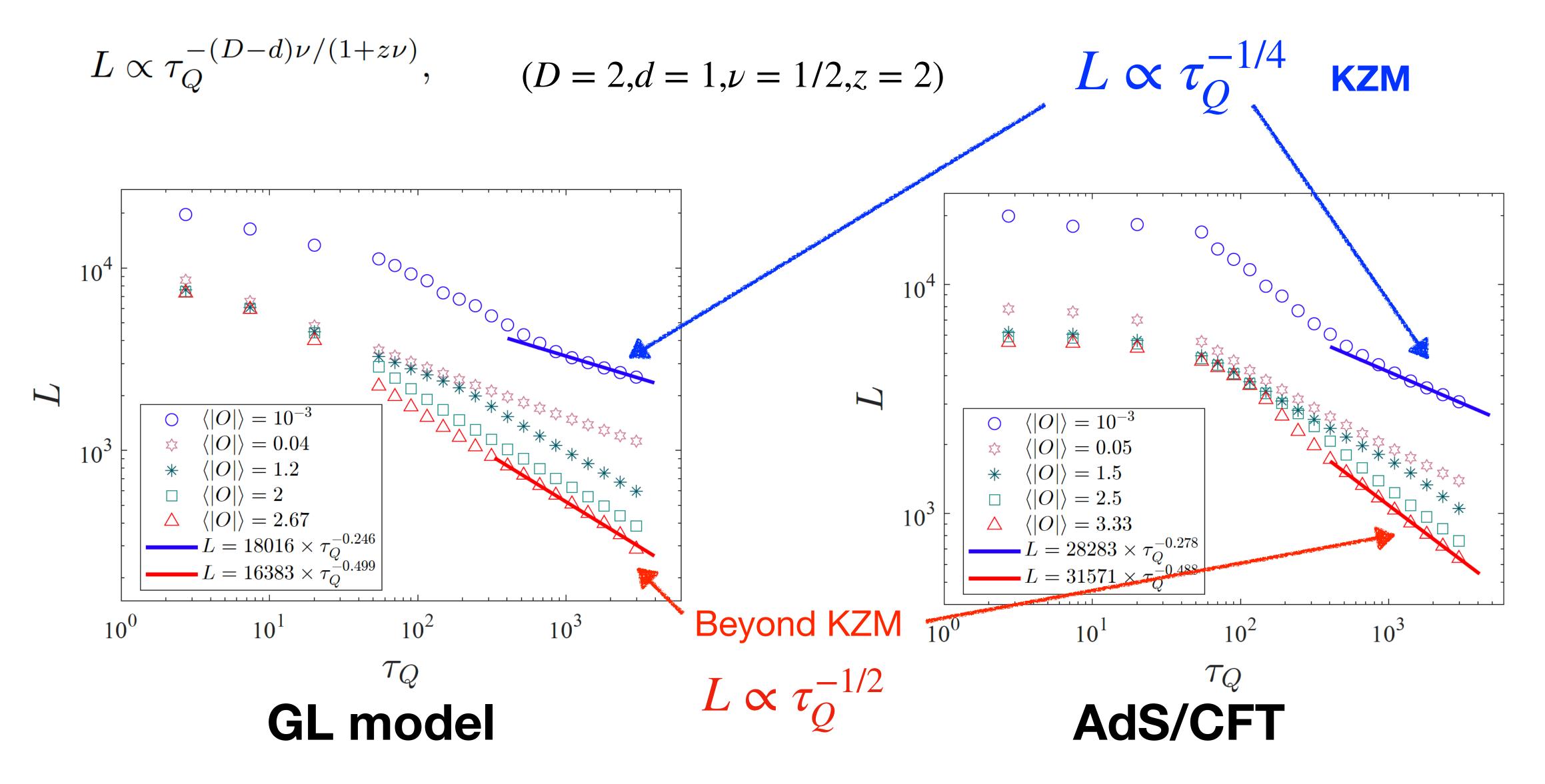
 $t/\tau_Q = 0.2823$ 



 $t/\tau_Q = 0.3756$ 

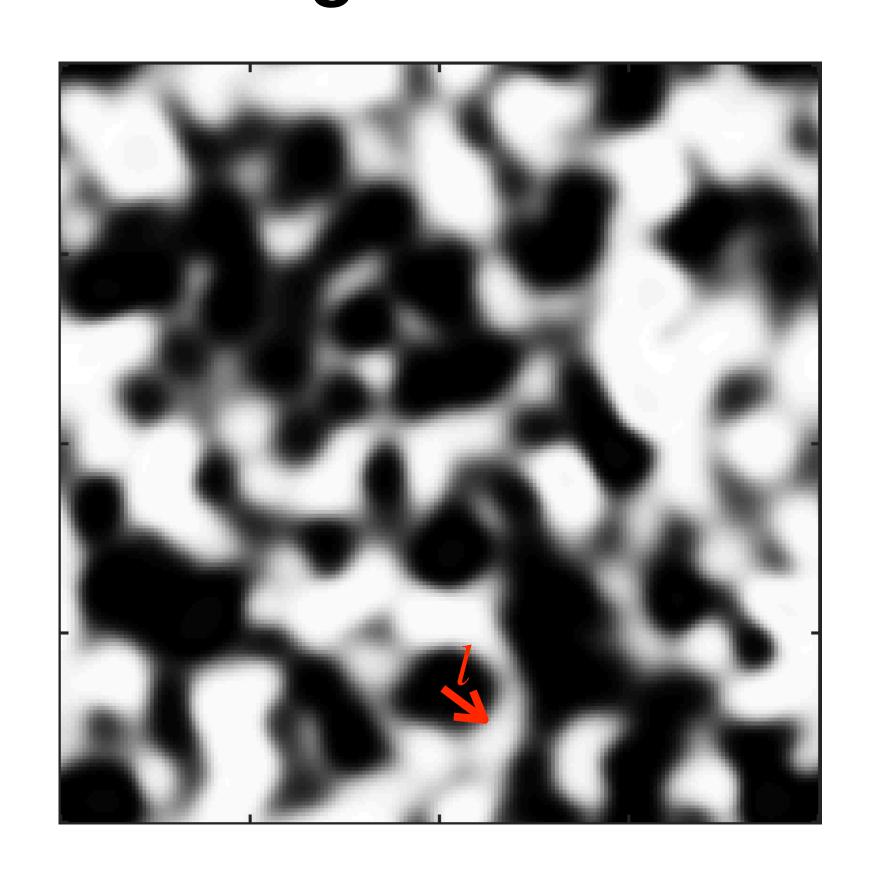
 $\langle |O| \rangle$ 

#### Domain wall length vs. quench rate



#### Coarsening domain wall length vs. time

A.J. Bray (1994), Advances in Physics, 43:3, 357-459 the length scale  $l \sim t^{1/2}$ 



Area A

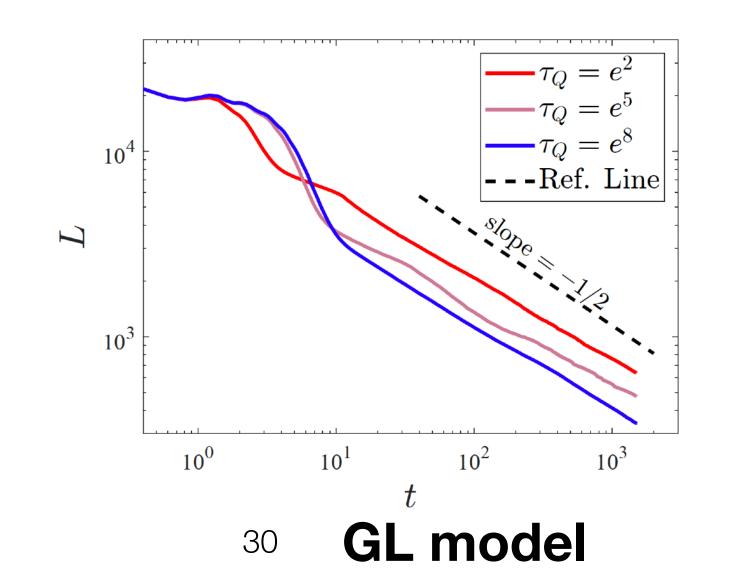
Number of domains:

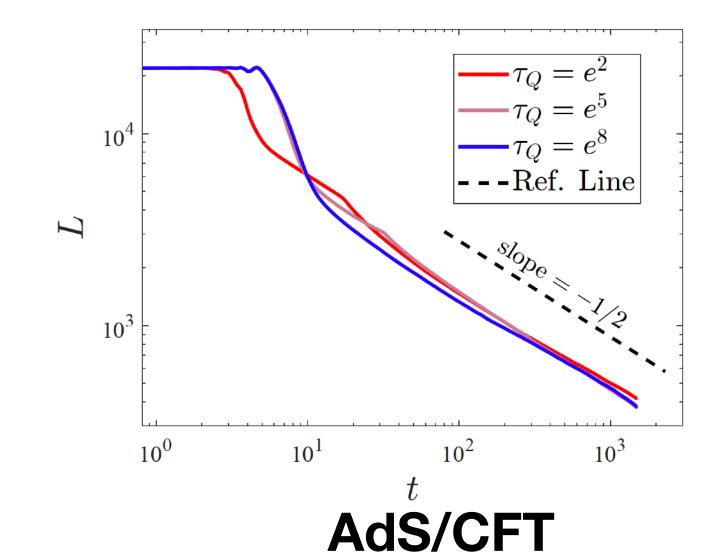
$$n = A/\pi l^2$$

Length of domain walls:  $L \approx n \cdot 2\pi l = 2A/l$ 

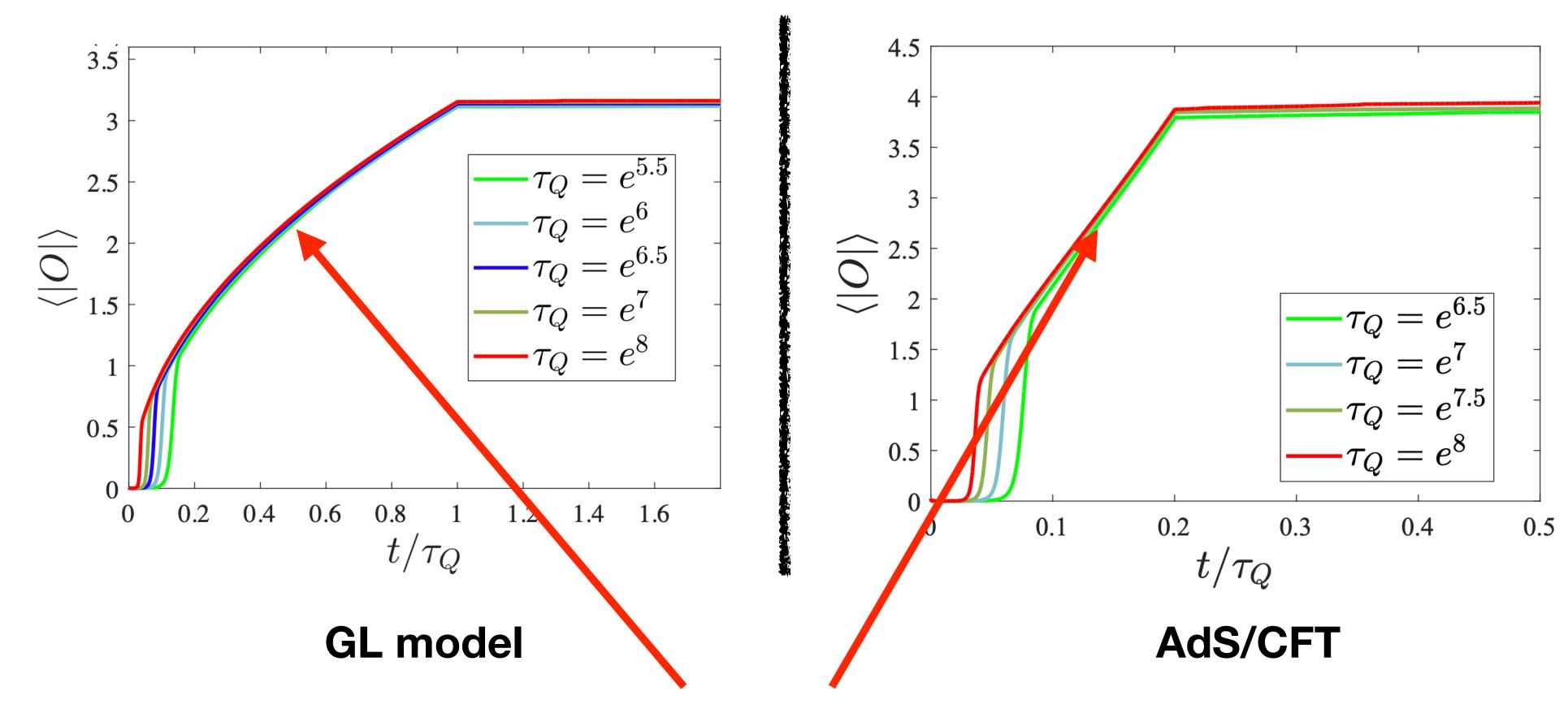
$$L \approx n \cdot 2\pi l = 2A/l$$

$$L \propto t^{-1/2}$$





#### Condensate vs time



Adiabatic evolution at late time  $t \propto \tau_Q$ 

 $L \propto t^{-1/2} \propto \tau_0^{-1/2}$ 

# Summary

- We have realized the kink hairs in the bulk, whose holographic dual can be interpreted as a one-dimensional spin chain. They are consistent with KZM;
- We have realized the domain wall structures holographically; However, due to the coarsening dynamics, the KZ scalings are only satisfied nearby the critical point; away from the critical point, this relation would be destroyed, and satisfy another power-law

## Thank you very much!