Non-local operators and area law in CFT

Jiang Long

Huazhong University of Science and Technology (HUST)

based on arXiv: 2007.15380, 2001.05129, 1911.11487, 1907.00646

International Conference on Holography, String Theory and Discrete Approaches Hanoi

August 3, 2020

- Introduction
- OPE blocks for spherical region
- 3 Connected correlation function
- 4 Area law and OPE block
- Examples
- 6 A puzzle
- Summary & Outlook

Area law in physics

- Area law
 - keypoint to understand gravitational physics & holography.
 - relates geometry to physics
- Diverse area laws in physics
 - Black hole physics:

Bekenstein, Hawking, 1970'

$$S_{BH} = \frac{A}{4G_N}. ag{1.1}$$

Geometric entanglement entropy:

Bombelli, Koul, Lee, Sorkin, Srednicki, Callan, Wilczek, etc., 1990'

$$S_{EE} = \gamma \frac{A}{\epsilon^{d-2}} + \dots + p \log \frac{R}{\epsilon} + \dots$$
 (1.2)

Holographic description of entanglement entropy:

Ryu & Takayanagi 2006

$$S_{RT} = \frac{A}{4G_N} + \text{qc.} \tag{1.3}$$

Q: is there any other area law in physics?

• The similarity of the area laws

Area
$$\sim$$
 Entropy. (1.4)

New area laws

Area
$$\sim$$
 CCF (1.5)

• Area law of entanglement entropy becomes a limit of the new area law.

Area law and non-local operators

Entanglement entropy and modular Hamiltonian

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{tr}_A \rho_A^n = \frac{1}{1-n} \log \operatorname{tr}_A e^{-nH_A}.$$
 (1.6)

- Modular Hamiltonian $H_A = -\log \rho_A$.
 - Non-local operator in A.
 - Half plane

J.Bisognano & E.Wichmann, 1976

$$H_A = 2\pi \int_{x>0} dx d^{d-2} \vec{y} \times T_{00}. \tag{1.7}$$

• Spherical region Σ_A (CFT) Casini, Huerta & Myers, 1102.0440

$$H_A = 2\pi \int_{\Sigma_A} d^{d-1} \vec{x} \frac{R^2 - (\vec{x} - \vec{x_0})^2}{2R} T_{00}.$$
 (1.8)

AdS gravity with a CFT dual

Jafferis, etc, 1512.06431

$$H_A = \frac{A}{4G_N} + \mathcal{O}(G_N^0) \tag{1.9}$$

Modular Hamiltonian is a special OPE block for spherical region.

Definition

- Primary operators \mathcal{O} with quantum number Δ, J .
- Operator product expansion (OPE)
 - two scalar primary operators

$$\mathcal{O}_{i}(x_{1})\mathcal{O}_{j}(x_{2}) = \sum_{k} C_{ijk}|x_{12}|^{\Delta_{k}-\Delta_{i}-\Delta_{j}}(\mathcal{O}_{k}(x_{2})+\cdots)$$

$$= |x_{1}-x_{2}|^{-\Delta_{i}-\Delta_{j}}\sum_{k} C_{ijk}Q_{k}^{ij}(x_{1},x_{2}) \qquad (2.1)$$

• OPE block: $Q_{k}^{ij}(x_1, x_2)$.

Czech. etc. 1604.03110

- depends on the external operators
- depends on the insertion points
- dimension zero & non-local operator
- special case, i = j, it is independent of the external operators.

$$Q_{A}[\mathcal{O}_{k}] = Q_{k}^{ii}(x_{1}, x_{2}). \tag{2.2}$$

• $A \leftrightarrow (x_1, x_2)$

Timelike pair and causal diamond

A timelike pair is in one-to-one correspondence to a causal diamond.

Figure: A timelike pair and causal diamond, from 1604.03310

Diamond A is invariant under the action of conformal Killing vector

$$K^{\mu} = \frac{1}{2R} (R^2 - (\vec{x} - \vec{x}_0)^2, -2t(\vec{x} - \vec{x}_0))$$
 (2.3)

OPE block

- OPE block with equal external primary operator de Boer, etc. 1606.03307
- In general, $\partial \cdot \mathcal{O} \neq 0 \rightarrow \mathsf{Type}\text{-}\mathsf{O} \ \mathsf{OPE} \ \mathsf{block}$

$$Q_A[\mathcal{O}_{\mu_1\cdots\mu_J}] = \int_A d^d x K^{\mu_1}\cdots K^{\mu_J} |K|^{\Delta-d-J} \mathcal{O}_{\mu_1\cdots\mu_J}, \qquad (2.4)$$

• conserved current $\partial \cdot \mathcal{J} = 0 \rightarrow \mathsf{Type}\text{-}\mathsf{J} \ \mathsf{OPE} \ \mathsf{block}$

$$Q_{A}[\mathcal{J}_{\mu_{1}\cdots\mu_{J}}] = \int_{\Sigma_{A}} d^{d-1}\vec{x}(K^{0})^{J-1}\mathcal{J}_{0\cdots0}.$$
 (2.5)

- Modular Hamiltonian is a special Type-J OPE block for spherical region
- generated by stress tensor, $\partial_{\mu}T^{\mu\nu}=0$.

Deformed reduced density matrix

- Reduced density matrix is the exponential operator of modular Hamiltonian $\rho_A = e^{-H_A}$.
- ullet Replace modular Hamiltonian by a general OPE block o deformed reduced density matrix

$$\rho_{\mathcal{A}} = e^{-\mu Q_{\mathcal{A}}}.\tag{3.1}$$

- Q_A could be a linear superposition of OPE blocks.
- when $[H_A, Q_A] = 0$, μ could be interpreted as the chemical potential which is dual to Q_{Δ} .
- not always well defined if Q_A has no lower bound
- a formal generator of connected correlation function (CCF)

$$T_{\mathcal{A}}(\mu) = \log\langle e^{-\mu Q_{\mathcal{A}}}\rangle \tag{3.2}$$

• (m)-type CCF

$$\langle Q_A^m \rangle_c = (-1)^m \partial_\mu^m T_A(\mu)|_{\mu=0}.$$
 (3.3)

Connected correlation function (CCF)

- several spacelike separated regions A, B, C, \cdots
- m₁ OPE blocks in A, m₂ OPE blocks in B, etc.
- symmetry between separated regions, $m_1 \ge m_2 \ge \cdots \ge m_n \ge 1$.
- $Y = (m_1, m_2, \cdots, m_n)$
- Y-type CCF

$$\langle Q_A^{m_1} Q_B^{m_2} \cdots \rangle_c \tag{3.4}$$

 \bullet conformal symmetry constrains (m, 1)-type CCF is always a conformal block

$$\langle Q_A[\mathcal{O}_1]\cdots Q_A[\mathcal{O}_m]Q_B[\mathcal{O}]\rangle_c = D[\mathcal{O}_1,\cdots,\mathcal{O}_m,\mathcal{O}]G_{\Delta,J}(z).$$
 (3.5)

- $G_{\Delta,J}$ is the conformal block associated with primary operator \mathcal{O} .
- z denotes the cross ratio related to two diamonds A and B.

(m)-type CCF of modular Hamiltonian (I)

 Rényi entanglement entropy is the generator of (m)-type CCF for modular Hamiltonian.

$$\langle H_A^m \rangle_c = (-1)^m \partial_n^m (1-n) S_A^{(n)}|_{n \to 1}$$
 (3.6)

Area law of Rényi EE

$$S_A^{(n)} = \gamma(n) \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + p(n) \log \frac{R}{\epsilon} + \dots$$
 (3.7)

• (m)-type CCF of modular Hamiltonian should also obey area law

$$\langle H_A^m \rangle_c = \tilde{\gamma} \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + \tilde{p} \log \frac{R}{\epsilon} + \dots$$
 (3.8)

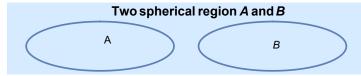
(m)-type CCF of modular Hamiltonian (II)

- An argument without reference to Rényi EE
- \bullet (m-1,1)-type CCF is always conformal block, especially for modular Hamiltonian

$$\langle H_A^{m-1} H_B \rangle_c = D[T_{\mu_1 \nu_1}, \cdots, T_{\mu_m \nu_m}] G_{d,2}(z).$$
 (3.9)

Choose A and B as follows

$$A = \{(0, \vec{x}) | (\vec{x} - \vec{x}_A)^2 \le R^2\}, \quad B = \{(0, \vec{x}) | \vec{x}^2 \le R'^2\}$$
 (3.10)



• A and B are spacelike separated, the cross ratio 0 < z < 1.

$$z = \frac{4RR'}{x_A^2 - (R - R')^2} \tag{3.11}$$

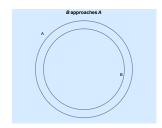
(m)-type CCF of modular Hamiltonian (III)

• consider the limit $B \to A$,

$$\langle H_A^{m-1} H_B \rangle_c \to \langle H_A^m \rangle_c, \quad B \to A$$
 (3.12)

- need a way to continue conformal block
- $x_A = 0$, then $R' \to R$ through

$$R' = R - \epsilon, \quad z = \frac{4R(R - \epsilon)}{-\epsilon^2} \sim -\frac{R^2}{\epsilon^2} \to -\infty$$
 (3.13)



ullet continue conformal block $G_{d,2}(z)$ to the region $z o -\infty$

(m)-type CCF of modular Hamiltonian (IV)

area law from the continuation of conformal block

$$\langle H_A^m \rangle_c = \lim_{B \to A} \langle H_A^{m-1} H_B \rangle_c = \lim_{z \to -\frac{R^2}{\epsilon^2}} D[T_{\mu_1 \nu_1}, \cdots, T_{\mu_m \nu_m}] G_{d,2}(z)$$

$$= \gamma \frac{R^2}{\epsilon^2} + \cdots + p_1^e \log \frac{R}{\epsilon} + \cdots, \quad d = 4.$$
(3.14)

with

$$p_1^e = -120D. (3.15)$$

- we obtain area law from continuation of (m-1,1)-type CCF.
- D: leading behaviour when A and B are far away (IR)
- p_1^e : cutoff independent coefficient when A and B are the same (UV).
- \bullet -120 is from the continuation of conformal block which is fixed by conformal symmetry.
- $p \sim E \times D$, a typical UV/IR relation

(m)-type CCF of OPE block (I)

- Modular Hamiltonian H_A is a type-J OPE block for spherical region
- (m)-type CCF of modular Hamiltonian obeys area law
- More general (m)-type CCF

$$\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c$$
 (4.1)

where $Q_A[\mathcal{O}_i]$ belong to the same type of OPE block.

• Consider (m-1,1)-type CCF

$$\langle Q_A[\mathcal{O}_1]\cdots Q_A[\mathcal{O}_{m-1}]Q_B[\mathcal{O}_m]\rangle_c = D[\mathcal{O}_1,\cdots,\mathcal{O}_m]G_{\Delta_m,J_m}(z). \quad (4.2)$$

Continuation for general conformal block

(m)-type CCF of OPE block (II)

We obtain the following behaviour

$$\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c = \gamma \frac{R^{d-2}}{\epsilon^{d-2}} + \cdots + p_q[\mathcal{O}_1, \cdots, \mathcal{O}_m] \log^q \frac{R}{\epsilon} + \cdots$$
(4.3)

- If the coefficient D is finite,
 - Leading term obeys area law
 - q:maximal power of the logarithmic term, degree of the (m)-type CCF.

$$q = \begin{cases} 1, & \text{type-J \& d even.} \\ 2, & \text{type-O \& d even.} \\ 0, & \text{type-J \& d odd.} \\ 1, & \text{type-O \& d odd.} \end{cases}$$
 (4.4)

- q is fixed by the conformal block associated with \mathcal{O}_m .
- coefficient p_a is cutoff independent.
- UV/IR relation

$$p_q[\mathcal{O}_1,\cdots,\mathcal{O}_m]=E[\mathcal{O}_m]D[\mathcal{O}_1,\cdots,\mathcal{O}_m]$$
(4.5)

UV/IR relation

- \bullet $p = E \times D$.
- D: leading behaviour of (m-1,1)-type CCF when A and B are far apart (IR aspect)
- p: cutoff independent coefficient in the subleading term of (m)-type CCF, A and B should be the same (UV aspect)
- E: encodes kinematic information
 - E can be obtained from analytic continuation of conformal block. For example, for type-J OPE block in four dimensions

$$E[\mathcal{O}] = \begin{cases} 12, & \Delta = 3, J = 1. \\ -120, & \Delta = 4, J = 2. \end{cases}$$
(4.6)

UV/IR relation: $p = E \times D$

For type-O OPE block in four dimensions

$$E[\mathcal{O}] = \begin{cases} -\frac{2^{2\Delta - 1}\Gamma(\frac{\Delta - 1}{2})\Gamma(\frac{\Delta + 1}{2})}{\pi\Gamma(\frac{\Delta - 2}{2})}, & \Delta > 1, \quad J = 0.\\ \frac{2^{2\Delta - 1}\Gamma(\frac{\Delta}{2})\Gamma(\frac{\Delta + 2}{2})}{\pi\Gamma(\frac{\Delta - 3}{2})\Gamma(\frac{\Delta + 1}{2})}, & \Delta > 3, \quad J = 1.\\ -\frac{4^{\Delta - 1}(\Delta - 2)\Gamma(\frac{\Delta - 3}{2})\Gamma(\frac{\Delta + 3}{2})}{\pi\Gamma(\frac{\Delta - 4}{2})\Gamma(\frac{\Delta + 2}{2})}, & \Delta > 4, \quad J = 2.\\ \dots \end{cases}$$
(4.7)

- Unitary bound of scalar operator in four dimensions $\Delta > 1$
 - Note: $\Delta \rightarrow 1$, *E* is divergent.
- Unitary bound of a non-conserved primary current in four dimensions $\Delta > J + 2$. S.Minwalla, 9712074
 - limiting behaviour: $\Delta \to J+2$, $E[\mathcal{O}] \to 0$, $p_2 \to 0$ for finite D. The degree q = 2 becomes q = 1.

UV/IR relation: $p = E \times D$

• The relation is 'asymmetric' since E just depends on operator \mathcal{O}_m .

$$p_q[\mathcal{O}_1,\cdots,\mathcal{O}_m]=E[\mathcal{O}_m]D[\mathcal{O}_1,\cdots,\mathcal{O}_m]$$
 (4.8)

 There should be m different ways to move one OPE block to region B, for example

$$\langle Q_A[\mathcal{O}_2] \cdots Q_A[\mathcal{O}_m] Q_B[\mathcal{O}_1] \rangle_c$$
 (4.9)

leads to another UV/IR relation

$$p_q[\mathcal{O}_2,\cdots,\mathcal{O}_m,\mathcal{O}_1]=E[\mathcal{O}_1]D[\mathcal{O}_2,\cdots,\mathcal{O}_m,\mathcal{O}_1]. \tag{4.10}$$

- p_a is cutoff independent
- Cyclic identity (m = 3 as an exmaple)

$$p_q[\mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_1] = p_q[\mathcal{O}_3, \mathcal{O}_1, \mathcal{O}_2] = p_q[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3]. \tag{4.11}$$

• The leading term coefficient γ is cutoff dependent, it doesn't satisfy cyclic identity

$$\gamma[\mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_1] \neq \gamma[\mathcal{O}_3, \mathcal{O}_1, \mathcal{O}_2] \neq \gamma[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3]. \tag{4.12}$$

Example 1: Chiral operators in CFT_2 (I)

- In two dimensions, the leading term of (m)-type CCF is already the logarithmic term.
- A chiral operator \mathcal{O} in CFT₂ only depends on (anti-)holomorphic coordinate

$$\bar{\partial}\mathcal{O}(z) = 0 \tag{5.1}$$

- The ball in one spatial dimension is an interval, we assume the length is 2 and the center is 0.
- The corresponding OPE block is type-J.

$$Q_{A}[\mathcal{O}] = \int_{-1}^{1} dz (\frac{1-z^{2}}{2})^{h-1} \mathcal{O}(z).$$
 (5.2)

• degree q=1.

Chiral operators in CFT₂ (II)

• (2)-type, $\sqrt{\;}$; UV/IR relation $\sqrt{\;}$

$$p_1[\mathcal{O}, \mathcal{O}] = \frac{(-1)^{-h} \sqrt{\pi} \Gamma(h)}{\Gamma(h + \frac{1}{2})} N_{\mathcal{O}}..$$
 (5.3)

(3)-type, using UV/IR relation

$$p_{1}[\mathcal{O}_{1},\mathcal{O}_{2},\mathcal{O}_{3}] = \frac{\pi^{3/2}2^{3-h_{1}-h_{2}-h_{3}}(-1)^{\frac{h_{1}+h_{2}+h_{3}}{2}}\Gamma(h_{1})\Gamma(h_{2})\Gamma(h_{3})\kappa C_{123}}{\Gamma(\frac{1+h_{1}+h_{2}-h_{3}}{2})\Gamma(\frac{1+h_{1}+h_{3}-h_{2}}{2})\Gamma(\frac{1+h_{2}+h_{3}-h_{1}}{2})\Gamma(\frac{h_{1}+h_{2}+h_{3}}{2})\Gamma(\frac{h_{$$

with $\kappa = \frac{1 + (-1)^{h_1 + h_2 + h_3}}{2}$.

- $\sqrt{}$ for h_i are integers and no larger than 6.
- cyclic identity \(\square

$$p_1[\mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_1] = p_1[\mathcal{O}_3, \mathcal{O}_1, \mathcal{O}_2] = p_1[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3]$$
 (5.5)

ullet (4)-type, free scalar theory and theory with ${\cal W}$ symmetry $\sqrt{}$

Example 2: Non-conserved primary operator in CFT₄ (I)

- For a primary operator which is non-conserved, $Q_A[\mathcal{O}]$ is type-O.
- Degree q=2.
- (2)-type

$$p_{2}[\mathcal{O},\mathcal{O}] = \begin{cases} -\frac{4\pi^{2}(\Delta-1)\Gamma(\Delta-2)^{2}\Gamma(\frac{\Delta}{2})^{4}}{\Gamma(\Delta)^{2}\Gamma(\Delta-1)^{2}}N_{\mathcal{O}}, & J=0,\Delta\geq1. \\ -\frac{4^{1-\Delta}\pi^{3}\Delta\Gamma(\frac{\Delta-3}{2})\Gamma(\frac{\Delta+1}{2})}{\Gamma(\frac{\Delta}{2}+1)^{2}}N_{\mathcal{O}}, & J=1,\Delta>3. \\ -\frac{3\pi^{4}(\Delta-2)\Delta^{2}\Gamma(\frac{\Delta}{2}-2)^{2}\Gamma(\frac{\Delta}{2}-1)^{2}}{64\Gamma(\Delta-4)\Gamma(\Delta+2)}N_{\mathcal{O}}, & J=2,\Delta>4. \\ \dots \end{cases}$$

(5.6)

- They are obtained from UV/IR relation
- They can be checked by computing the integral directly with regularization for specific Δ .

Non-conserved primary operator in CFT_4 (II)

• (3)-type, scalar primary operator

$$p_2[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3] = C \int_{\mathbb{D}^2} d^2 \mu_0 \int_{\mathbb{D}^2} d^2 \mu_0' \int_0^{\pi} d\theta \frac{\sin \theta}{\left(a + b \cos \theta\right)^{\frac{\Delta_{12,3}}{2}}},$$

where $C=-2^{4-\Delta_1-\Delta_2-\Delta_3}\pi^3\mathit{C}_{123}$ and

$$d^{2}\mu_{0} = d\zeta d\bar{\zeta}(\zeta + \bar{\zeta})^{2}(1 - \zeta^{2})^{\frac{\Delta_{1} - 4}{2}}(1 - \bar{\zeta}^{2})^{\frac{\Delta_{1} - 4}{2}},$$

$$d^{2}\mu'_{0} = d\zeta' d\bar{\zeta}'(\zeta' + \bar{\zeta}')^{2}(1 - \zeta'^{2})^{\frac{\Delta_{2} - 4}{2}}(1 - \bar{\zeta}'^{2})^{\frac{\Delta_{2} - 4}{2}}$$
(5.7)

$$a = \zeta \overline{\zeta} + \zeta' \overline{\zeta}' + \frac{1}{2} (\zeta - \overline{\zeta})(\zeta' - \overline{\zeta}'), \quad b = -\frac{1}{2} (\zeta + \overline{\zeta})(\zeta' + \overline{\zeta}') \quad (5.8)$$

$$\Delta_{12,3} = \Delta_1 + \Delta_2 - \Delta_3 \tag{5.9}$$

cyclic identity

$$p_2[4,6,8] = p_2[4,8,6] = p_2[8,4,6] = -\frac{\pi^3}{1728}C_{123}.$$
 (5.10)

Example 3: Conserved currents in CFT₄ (I)

- OPE block is type-J, degree q=1.
- (2)-type

$$p_{1}[\mathcal{J},\mathcal{J}] = \begin{cases} -\frac{\pi^{2}}{3}C_{J}, & J = 1, \\ -\frac{\pi^{2}}{40}C_{T}, & J = 2, \\ \cdots \end{cases}$$
 (5.11)

- regularize the integral
- UV/IR relation
- For J=2, stress tensor, this is consistent with universal results of modular Hamiltonian

E.Perlmutter. 1308.1083

$$\langle H_A^2 \rangle_c = -\frac{1}{2\pi^2} S_{q=1}' = -\frac{\pi^2}{40} C_T.$$
 (5.12)

Conserved currents in CFT₄ (II)

• (3)-type

$$p_{1}[\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}] = \begin{cases} -\frac{\pi^{3}}{2} C_{T\mathcal{J}\mathcal{J}}, & J_{1} = J_{2} = 1, J_{3} = 2.\\ \frac{\pi^{3}}{12} C_{TTT}, & J_{1} = J_{2} = J_{3} = 2.\\ \cdots \end{cases}$$
(5.13)

- Three point function for conserved currents
 H.Osborn & A.C.Petkou, 9307010
 J.Erdmenger & H.Osborn,9605009
 - Spin 1-1-2. Only two independent structures, a, b

$$C_{\mathcal{T}\mathcal{J}\mathcal{J}} = \frac{3b - 4a}{8}. ag{5.14}$$

ullet Spin 2-2-2. Only three independent structures, $\mathcal{A},\mathcal{B},\mathcal{C}$

$$C_{TTT} = \frac{-2(4 - 5d + 2d^2)A + dB + 2(5d - 4)C}{4d^2}, \quad d = 4.$$
 (5.15)

• $J_1=J_2=J_3$, universal results of modular Hamiltonian J.Lee, A.Lewkowycz, E.Perlmutter & B.R.Safdi, 1407.7816

$$\langle Q_A[\mathcal{O}] \cdots Q_A[\mathcal{J}] \rangle_c$$

- In previous discussion, OPE blocks in CCF belong to the same type.
- Type-O & type-J
- A severe puzzle

$$\langle Q_{A}[\mathcal{O}] \cdots Q_{A}[\mathcal{J}] \rangle_{c} \to \langle Q_{A}[\mathcal{O}] Q_{A}[\tilde{\mathcal{O}}] Q_{B}[\mathcal{J}] \rangle_{c} = D[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}] G_{\Delta, J}(z),$$

$$\langle Q_{A}[\mathcal{O}] \cdots Q_{A}[\mathcal{J}] \rangle_{c} \to \langle Q_{A}[\tilde{\mathcal{O}}] Q_{A}[\mathcal{J}] Q_{B}[\mathcal{O}] \rangle_{c} = D[\tilde{\mathcal{O}}, \mathcal{J}, \mathcal{O}] G_{\Delta', J'}(z)$$

UV/IR relation, rather different degree q.

$$p_{1}[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}] = E[\mathcal{J}]D[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}],$$

$$p_{2}[\tilde{\mathcal{O}}, \mathcal{O}, \mathcal{J}] = E[\mathcal{O}]D[\tilde{\mathcal{O}}, \mathcal{J}, \mathcal{O}].$$
(6.1)

• $D[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}]$ is divergent.

An example

A simplest nontrivial CCF, spin 2-0-0.

$$\langle Q_A[T_{\mu\nu}]Q_A[\mathcal{O}]Q_A[\mathcal{O}]\rangle_c$$
 (6.2)

• From $\langle Q_A[T_{\mu\nu}]Q_A[\mathcal{O}]Q_B[\mathcal{O}]\rangle_c$

$$D[T_{\mu\nu}, \mathcal{O}, \mathcal{O}] = -\frac{\pi^5 4^{3-2\Delta} \Gamma(\frac{\Delta}{2} - 1)^4}{\Delta(\Delta - 2) \Gamma(\frac{\Delta - 3}{2}) \Gamma(\frac{\Delta - 1}{2})^2 \Gamma(\frac{\Delta + 1}{2})} a.$$

$$\Rightarrow p_2[T_{\mu\nu}, \mathcal{O}, \mathcal{O}] = \frac{2^{5-2\Delta} \pi^4 \Gamma(\frac{\Delta}{2} - 1)^2}{\Delta(\Delta - 2) \Gamma(\frac{\Delta - 3}{2}) \Gamma(\frac{\Delta - 1}{2})} a. \tag{6.3}$$

• From $\langle Q_A[\mathcal{O}]Q_A[\mathcal{O}]Q_B[T_{\mu\nu}]\rangle_c$

$$D[\mathcal{O}, \mathcal{O}, T_{\mu\nu}] = -\frac{\pi^3}{3840} a \log \frac{R}{\epsilon} + \cdots \quad \text{for } \Delta = 4.$$

$$\Rightarrow p_2 = \frac{\pi^3}{32} a \tag{6.4}$$

logarithmic divergence of D increases the degree by 1,

Divergent D

- The puzzle is from the assumption that D is always finite.
- The coefficient $D[\mathcal{O}, \mathcal{O}, T_{\mu\nu}]$ presents logarithmic divergence behaviour

$$\langle Q_A[\mathcal{O}]^2 Q_B[T_{\mu\nu}] \rangle_c \sim D_{\log}[\mathcal{O}, \mathcal{O}, T_{\mu\nu}] \log \frac{R}{\epsilon} G_{4,2}(z).$$
 (6.5)

- D is finite when the OPE blocks belong to the same type
- $D[\mathcal{O}, \cdots, \mathcal{J}]$ should present logarithmic divergence behaviour to cure the puzzle.
- The degree q=2 rather than 1.
- UV/IR relation becomes

$$p_2[\mathcal{O}, \mathcal{O}, T_{\mu\nu}] = E[T_{\mu\nu}] \frac{D_{\log}[\mathcal{O}, \mathcal{O}, T_{\mu\nu}]}{D_{\log}[\mathcal{O}, \mathcal{O}, T_{\mu\nu}]}.$$
 (6.6)

Summary

We find a new area law

$$\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c = \gamma \frac{R^{d-2}}{\epsilon^{d-2}} + \cdots + p_q[\mathcal{O}_1, \cdots, \mathcal{O}_m] \log^q \frac{R}{\epsilon} + \cdots.$$
(7.1)

We obtain UV/IR relation

$$p = E \times D. \tag{7.2}$$

• We check cyclic identity of p for m=3.

$$p[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3] = p[\mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_1] = p[\mathcal{O}_3, \mathcal{O}_1, \mathcal{O}_2].$$
 (7.3)

Outlook

- Area law
 - m > 4?
 - CCF including both type-J and type-O OPE blocks?
- Logarithmic behaviour
 - Degree 0 < q < 2?
 - Logarithmic divergence of (m, 1)-type CCF

$$\langle Q_A[\mathcal{O}] \cdots Q_B[\mathcal{J}] \rangle_c \stackrel{?}{=} (D_{\log}[\mathcal{O}, \cdots, \mathcal{J}] \log \frac{R}{\epsilon} + \cdots) G_{J+d-2,J}(z)$$
 (7.4)

- UV/IR relation
 - Proof?
 - Modified version when D is divergent

$$p = E \times D_{\log}. \tag{7.5}$$

• Cyclic identity of p for general $m \geq 4$.

$$p[\mathcal{O}_1,\cdots,\mathcal{O}_m]=\cdots=p[\mathcal{O}_2,\cdots,\mathcal{O}_m,\mathcal{O}_1]. \tag{7.6}$$

• It is only checked using several examples in free scalar theory for d=2,