
Keun-Young Kim

Deep Learning Bulk Spacetime from Boundary quantum data

2024.08. 21

Keun-Young Kim



2

Field theory, Gravity, String theory,  
Quantum information/chaos 

Holographic principle

300 km

Keun-Young Kim
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Deep Learning Bulk Spacetime from Boundary data
Holography

Quantum physics in 4D = Gravity in 5D

Entanglement structure 
~Tensor network

Complexity

Quantum entanglement  
= Minimal Area
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Deep Learning Bulk Spacetime from Boundary data
Holography

Quantum physics in 4D = Gravity in 5D

AI Question:  
How to construct the extra (holographic) dimension? 

as a deep neural network?
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Deep Learning Bulk Spacetime from Boundary data
Holography

AI Question:  
How to construct the extra (holographic) dimension? 

as a deep neural network?

Traditional way: Bulk to Boundary  
                        (physics intuition, principle (ex: symmetry), etc required) 

Inverse Problem: from boundary to bulk  
                         (physics intuition, symmetry(ex: symmetry), etc discovered)

For a difficult problem  
Once we know a qualitative answer, we can understand its meaning more easily 

(for example, “Linear T resistivity + T2 Hall angle together” )
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Deep Learning Bulk Spacetime from Boundary data
Holography

Why ML?   
Surprisingly, there are still many new ways to play Go!  

Machines may reveal unexpected new methods of understanding nature.

2016 March

The role of ML 
Knowing the answer (assisted by machines) is not the end of the story, but the beginning of human work.
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Deep Learning Bulk Spacetime from Boundary data
Holography

Why ML?   
Surprisingly, there are still many new ways to play Go!  

Machines may reveal unexpected new methods of understanding nature.

2016 March

The status of ML as a “general” research tool 
It's time to use machine learning as a toolbox.  

You use Mathematica without fully understanding how it works.  
You don't feel guilty using Mathematica, so using machine learning isn't cheating either.

The role of ML 
Knowing the answer (assisted by machines) is not the end of the story, but the beginning of human work.

Furthermore, I believe that ML will become as common as Python or C coding,  
making it a must-learn 'language' for science majors.
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My view point:  
Someone must study machine learning for holography,  

both for its fundamental understanding  
and its practical benefits in solving difficult problems.

I would collaborate with Machine.
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Original Idea
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Reference I
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Reference II
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ArXiv:2404:07395

Reference III
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Deep Learning 101
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Deep Learning 101

x1

x2

x3

y

W1

W2

W3 b

y = σ(W1x1 + W2x2 + W3x3 + b)

Weight Bias

Activation function
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Standard Deep Learning
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Standard Deep Learning

z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j )

~800 epoch
71 parameters
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Original Idea
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Reference 1



24

Deep Learning for ODE: classical mechanics

m ··x = F(x)

·x = v , ·v =
1
m

F
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Deep Learning for ODE: classical mechanics
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = F(z)

m ··x = F

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = D(z)g(z)

E(z)g′ ′ (z)+F(z)g′ (z)+G(z)g(z) = H(z)h(z)
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II



32

AdS/Deep learning: optical conductivity

m ··x = F(x) ·x = v , ·v =
1
m

F



33

AdS/Deep learning: optical conductivity
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AdS/Deep learning: optical conductivity
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AdS/Deep learning: optical conductivity
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Deep Learning for integral: electrostatics
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Deep Learning for integral: electrostatics
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Deep Learning for integral: electrostatics
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Deep Learning for integral: electrostatics
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What is “Machine Learning” & “Deep Learning”?  
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- Deep Learning for ODE: classical mechanics 
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AdS/Deep learning: entanglement entropy

A(α) = ∫ F[ f1(r; α), f2(r; α), ⋯ ] dr

B(α) = ∫ G[ f1(r; α), f2(r; α), ⋯ ] dr
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AdS/Deep learning: entanglement entropy

RN Black holeℓ(z*) = ∫
z*

0
dz

2z2

z4
* − z4

1
f (z)

C(z*) := − 1 + ∫
z*

0
dz ⋅

z*

z2
1 −

z2

z2
*

1
f (z)

− 1

σ̄ :=
σ(ℓ(z*))

s
=

1
z2

*
+

C(z*)
z*

2
ℓ(z*)

+
4π

ℓ(z*)2

Γ( 3
4 )

Γ( 1
4 )

2



45

AdS/Deep learning: entanglement entropy

RN Black holeℓ(z*) = ∫
z*

0
dz

2z2

z4
* − z4

1
f (z)

C(z*) := − 1 + ∫
z*

0
dz ⋅

z*

z2
1 −

z2

z2
*

1
f (z)

− 1

σ̄ :=
σ(ℓ(z*))

s
=

1
z2

*
+

C(z*)
z*

2
ℓ(z*)

+
4π

ℓ(z*)2

Γ( 3
4 )

Γ( 1
4 )

2



46

AdS/Deep learning: entanglement entropy

RN Black holeℓ(z*) = ∫
z*

0
dz

2z2

z4
* − z4

1
f (z)

C(z*) := − 1 + ∫
z*

0
dz ⋅

z*

z2
1 −

z2

z2
*

1
f (z)

− 1

σ̄ :=
σ(ℓ(z*))

s
=

1
z2

*
+

C(z*)
z*

2
ℓ(z*)

+
4π

ℓ(z*)2

Γ( 3
4 )

Γ( 1
4 )

2



47

AdS/Deep learning: entanglement entropy

Gubser-Rocca case
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AdS/Deep learning: entanglement entropy
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Ongoing and future work 

Methodology development 

- Neural ODE  

- PDE 

- PINN (Physics Informed Neural Network) 

- Applications to other physics problems (ODE, PDE, Integral) 

Other physical quantities 

- ARPES: Fermionic spectral function 

- Quantum info: complexity, entanglement entropy, etc 

Figuring out action itself 

- Linear T resistivity + T2 Hall angle together
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Quantum physics ~ Spacetime
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Thank you


