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Plan of the talk

1 Kerr-Schild Ansatz : Definitions, Motivations and
Examples.

2 Degenerate Higher-Order Scalar Tensor Theories
(DHOST).

3 Construction of Regular Black Holes for DHOST Theories.

4 Conclusions and Works in Progress.
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Kerr-Schild Ansatz : Definitions, Motivations and
Examples

• Kerr-Schild Ansatz

gµν = g (0)
µν − 2H(x) lµlν ,

where g
(0)
µν is the seed metric, and l is a null and geodesic

vector field with respect to both metrics, i. e.

gµν lµlν = g (0)µν lµlν = 0, (∇µlν)l
ν = (∇(0)

µ lν)l
ν = 0.

In this representation, the Ricci tensor has the following form

Rµ
ν = R(0)µ

ν+2hµσR
(0)σ

ν−∇(0)
ν ∇(0)

σ hσµ−∇(0)µ∇(0)
σ hσµ+2(0)hµν

with hµν = Hlµlν . The same effect for linear perturbations

about the seed metric gµν = g
(0)
µν − 2hµν
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Kerr-Schild Ansatz : Definitions, Motivations and
Examples

• Kerr-Schild Ansatz

gµν = g (0)
µν − 2H(x) lµlν ,

1 In the case of BHs, the seed metric corresponds to the
asymptotic spacetime (zero mass solution), and for
rotating black holes the ”angular momentum” is codified
in the seed metric.

2 The mass (in case of black holes) is introduced through
the function H.
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Kerr-Schild Ansatz : Definitions, Motivations and
Examples

• Examples of Kerr-Schild metrics

1 The pp wave

ds2 = −F (u, x⃗)du2 − 2dudv + dx⃗2 = g flat
µν − Flµlν

where lµ∂µ = ∂v is also a Killing field.

2 The AdS wave

ds2 =
l2

y2
[
−F (u, y , x⃗)du2 − 2dudv + dy2 + dx⃗2

]
= gAdS

µν − y2F

l2
lµlν

3 In vacuum, most of the metrics describing black holes are
of the Kerr-Schild form (Schwarzschild, Kerr, Kerr-(A)dS
in arbitrary D).

4 Five-dimensional black ring solution is not of the
Kerr-Schild form. [R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101 (2002)]
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Kerr-(A)dS metric as a Kerr-Schild metric

• The seed flat/(A)dS metric :

ds20 = −(κ− λr2)∆(θ)

Ξa
dt2 +

Σ(r , θ)dr2

(κ− λr2)(r2 + κ2a2)

+
Σ(r , θ)

∆(θ)
dθ2 +

(r2 + κ2a2)h2κ(θ)

Ξa
dϕ2.

where κ = ±1 or κ = 0, λ is identified with the (A)dS scale
radius, and

∆(θ) = 1 + κλa2 cos2(
√
κ θ), Σ(r , θ) = r2 + κ2a2 cos2(

√
κ θ),

Ξa = 1 + κλa2, h2κ(θ) =
sin2(

√
κθ)

κ

• The Kerr-Schild transformation :

ds2 = ds20 + 2H(r , θ) l ⊗ l
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Kerr-(A)dS metric as a Kerr-Schild metric

• The null and geodesic vector

l(κ) =
1

Ξa

[
∆(θ)

√
1 + δ0κa

2 dt − a

(
sin2(

√
κ θ) +

δ0κ√
−λ

)
dϕ

]
+

Σ(r , θ) dr

(κ− λr2)(r2 + κ2a2)

• From the circularity theorem (Froebenius integrability
condition) and one of the Einstein eq.

H(r , θ) =
rM

Σ(r , θ)
.

• Boyer-Linquist coordinates

tBL = t −
∫

(2Mr)
√

1 + δ0κa
2

(κ− λr2)(r2 + κ2a2 − 2Mr)
dr ,

ϕBL = ϕ− a

∫
(2Mr)

√
1 + δ0κa

2

(κ− λr2)(r2 + κ2a2 − 2Mr)
dr .
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Kerr-Schild Ansatz in presence of matter source

1 The difficulty with the presence of source is to find an
appropriate ansatz for the extra dynamical fields to be fully
compatible with the equations of motion.

2 The most appealing example where the Kerr-Schild
procedure works is the Kerr-Newman solution in D = 4

ds2 = ds20 +
2r

Σ(r , θ)

(
M− Q2

2r

)
l ⊗ l , A =

rQ
Σ(r , θ)

l

3 BUT the higher-dimensional Kerr-Newman solution is not
yet known (A ∝ l is incompatible with the EOM)
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Kerr-Schild Ansatz in presence of matter source

• But, instead in five dimensions, consider the
Einstein-Maxwell-Chern-Simons action [Z-W. Chong , M. Cvetic, H. Lu and C.

N. Pope, Phys. Rev. Lett. 95, 161301 (2005).]

L = R + 12− FµνF
µν − 2

3
√
3
ϵµναβσAµFναFβσ,

Generalized Kerr-Schild representation of the charged solution

ds2 = ds̃20 + 2

(
M

Σ(r , θ)
− Q2

2Σ(r , θ)2

)
l ⊗ l +

Q
Σ(r , θ)

l ⊗m

A =

√
3

2Σ(r , θ)
l ,

where m is a spacelike vector mµm
µ ≥ 0 orthogonal to l and

A ∝ l , [A. N. Aliev and D. K. Ciftci, Phys. Rev. D 79, 044004 (2009)]
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Kerr-Schild Ansatz in presence of matter source

• Investigate the feasibility of the Kerr-Schild procedure in the
case of Scalar Tensor Theories (STT), i. e. L = L(g , ϕ) in
order to construct black holes with a scalar field source.

1 From a simple seed configuration (g0, ϕ0), generate a
nontrivial BH configuration (g , ϕ) by means of the
Kerr-Schild procedure.

2 Construct BHs with interesting features (e. g. regular BHs)
and with different asymptotics such as flat, (A)dS, Lifshitz
or even hyperscaling violation

3 The main idea will be to fix the desired properties of the
solution and by ”engineering inverse” to determine the
STT susceptible to sustain this solution.
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Presentation of the Kerr-Schild procedure

1 Consider a STT L(g , ∂g , ∂2g , ∂ϕ, ∂2ϕ) free of
Ostrogradski ghosts (that will be specify later) and
invariant under the shift symmetry of the scalar field
ϕ→ ϕ+cst.

2 Implement the KS Ansatz in the static case with a seed
configuration (g0, ϕ

(0))

ds20 = −h0(r)dt
2+

dr2

f0(r)
+r2dΣ2

2, ϕ
(0)(t, r) := qt+ψ(0)(r)

3 KS transformation for the metric

gµν = g (0)
µν + µa(r) lµlν , l = dt − dr√

f0(r) h0(r)

where µ ∝ M. The net effect of the KS transf. is

h0(r) → h0(r)− µa(r), f0(r) →
f0(r) (h0(r)− µa(r))

h0(r)
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Presentation of the Kerr-Schild procedure

• We have fixed the seed configuration and specify the
transformed metric =⇒ Specify the transformed scalar field.

• In the charged cases for which the Kerr-Schild procedure
works (the E-M action in D = 4 or for the EMCS action in
D = 5), one observes that

(A(0))2 := g (0)µνA(0)
µ A(0)

ν = A2 := gµνAµAν = 0

• Working hypothesis : We will demand that the kinetic term of
the scalar field remains unchanged (but not necessarily
constant) under the Kerr-Schild transformation of the metric

X (0) := g (0)µν ∂µϕ
(0) ∂νϕ

(0) = X := gµν ∂µϕ∂νϕ.
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Presentation of the Kerr-Schild procedure

• Invariance of the kinetic term through the Kerr-Schild
transformation

X (0) := g (0)µν ∂µϕ
(0) ∂νϕ

(0) = X := gµν ∂µϕ∂νϕ.

−→ Sols are such that the kinetic term X is mass independent
but not the scalar field ϕ.

−→ We will say that the action is Kerr-Schild invariant if

S(g , ϕ)−S(g (0), ϕ(0)) =

∫
dr E

(
r , a(r), a′(r),X (r),X ′(r)

)
+b.t.,

for a function a(r) = a(r ,X (0)(r)) such that E = 0.

−→ This condition seems to be quite restrictive but as shown
below, for general DHOST theories that are shift invariant
ϕ→ ϕ+constant, the set of EOM is always invariant under this
condition for a specific choice of the mass function a(r).
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Scalar Tensor Theories (STT)

1 Scalar tensor theories are one of the simplest modified
gravity theories which extend GR with one (or more) scalar
degrees of freedom.

2 Horndeski theory : The most general (single) scalar-tensor
theory with second order equations of motion =⇒ absence
of Ostrogradski ghosts [G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)].
The action is given by

∫
d4x

√
−g

∑5
i=2 Li where

L2 = K (ϕ,X ), L3 = −G3(ϕ,X )2ϕ,

L4 = G4(ϕ,X )R + G4,X

[
(2ϕ)2 − (∇µ∇νϕ)

2
]

L5 = G5(ϕ,X )Gµν∇µ∇νϕ−
G5,X

6

[
(2ϕ)3

−3 (2ϕ) (∇µ∇νϕ)
2 + 2 (∇µ∇νϕ)

3
]
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Degenerate Higher Order Scalar Tensor (DHOST)

• ∃ higher-order STTs which can propagate healthy degrees of
freedom. The most general such Lagrangian depending
quadratically on second-order derivatives of a scalar field was
dubbed Degenerate Higher Order Scalar Tensor (DHOST)
theory [D. Langlois and K. Noui, JCAP 1602 (2016) 034]

• The most general STT which contains up to second-order
covariant derivatives of the scalar field

L = K + G R + F12ϕ+ F2G
µνϕµν + A1ϕµνϕ

µν + A2(2ϕ)
2

+A32ϕϕ
µϕµνϕ

ν + A4ϕ
µϕµνϕ

νρϕρ + A5 (ϕ
µϕµνϕ

ν)2

where the coupling functions K ,G ,Fi and Ai are arbitrary
functions of ϕ and X = ϕµϕ

µ, and ϕµν = ∇µ∇νϕ.
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Degenerate Higher Order Scalar Tensor (DHOST)

−→ The DHOST conditions are given by [D. Langlois and K. Noui, JCAP

1602 (2016) 034 ; M. Crisostomi, K. Koyama and G. Tasinato, JCAP 1604, 044 (2016)]

A1 = −A2 ̸=
G

X
,

A4 =
1

8(G − XA1)2

{
4G

[
3(−A1 + 2GX )2 − 2A3G

]
− A3X

2(16A1GX + A3G)

+4X
[
−3A2A3G + 16A2

1GX − 16A1G
2
X − 4A3

1 + 2A3GGX

]}
,

A5 =
1

8(G − XA1)2
(2A1 − XA3 − 4GX ) (A1(2A1 + 3XA3 − 4GX ) − 4A3G) .

−→ This theory includes the Horndeski model
−→ Demanding the gravitational wave to propagate at the
speed of light A1 = A2 = 0.
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Degenerate Higher Order Scalar Tensor (DHOST)

• The KS procedure will be applied for L

1 Invariant under the reflection ϕ→ −ϕ (i. e. Fi = 0),

2 Shift invariant (i. e. the coupling functions will only
depend on X )

3 And free of Ostrogradski ghosts



Regular black
holes via the
Kerr-Schild
construction
in DHOST
theories

Mokhtar
Hassaine

Kerr-Schild transformation for DHOST theories

• The Kerr-Schild transf.

ds20 = −h0(r)dt
2 +

dr2

f0(r)
+ r2dΣ2

2, X (0)(r) =⇒

ds2 = −(h0 − µa)dt2 +
h0dr

2

f0(h0 − µa)
+ r2dΣ2

2, X = X (0)

• Variation of the DHOST action under the KS transf.

δS ∝
∫

dr

√
f0(r)

h0(r)

[
a(r)P(r ,X ) + a′(r)Q(r ,X )

]
+ b.t.,

• In order for the KS transf. to be a symmetry of the action

a(r) =
1

r
e

3
8

∫
dX B(X )

H(X ) , B(X ) = A3X + 4GX − 2A1, H(X ) = A1X − G

• Standard mass fall off a ∼ 1
r for X =cst or B = 0.
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Regular black hole solutions

1 The Bardeen regular solution [Bardeen, J., in Proceedings of GR5, Tiflis,

U.S.S.R. (1968)] is a counterexample to the possibility that the
existence of singularities may be proved in black hole
spacetimes without assuming either a global Cauchy
hypersurface or the strong energy condition

ds2 = −f (r)dt2+
dr2

f (r)
+r2dΣ2

2, f (r) = 1− 2mr2

(r2 + g2)
3
2

−→ Regular black hole obeying the weak energy condition,
asympto. flat and behaving like the Schwarzschild metric
for r >> ϵ, and with a de-Sitter core at the origin

f ∼ 1− 2m

g
r2, for r ∼ 0

−→ The Bardeen solution can be interpreted as a magnetic
solution to Einstein equations coupled to a nonlinear
electrodynamics [E. Ayon-Beato and A. Garcia, Phys. Lett. B 493, 149-152 (2000)].
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Regular black hole solutions

1 The Ayón-Beato-Garcia regular solution [E. Ayon-Beato and A. Garcia,

Phys. Rev. Lett. 80, 5056 (1998)]

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΣ2

2,

f (r) = 1− 2mr2

(r2 + q2)
3
2

+
q2r2

(r2 + q2)2

−→ Regular black hole obeying the weak energy condition,
asympto. flat and behaving like the Reissner-Nordstrom
metric for r >> ϵ, and with a de-Sitter core at the origin

f ∼ 1−
(
2m

q
− 1

)
r2

q2
, for r ∼ 0
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Construction of regular black hole solutions for
DHOST theories

• Construction of asymptotically flat regular with a flat seed
metric h0 = f0 = 1

1 The final metric obtained through the Kerr-Schild transf.
reads

h(r) = f (r) = 1− µ

r
e
∫
dX 3B

8H .

2 Make the following simple hypothesis (λ is a constant),

3B

8H
=
λ

X
=⇒ h(r) = f (r) = 1− µ X (r)λ

r
.

3 The idea will be to choose an appropriate kinetic term
X (r) and a parameter λ in order for the metric to be :
asymptotically flat and to have an outer event horizon at
some finite r = rh and to satisfy the Sakharov criterion at
the origin

f (r) ∼
r∼0

1− f0r
p, p ≥ 2,

−→ metric function possesses at least a de-Sitter core near
the origin
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Construction of regular black hole solutions for
DHOST theories

1 Hence by inverse engineering −→ specify the
corresponding DHOST theory, i. e. K ,G ,A1 and A3 (as
functions of X only).

2 For example for λ = 2 and X (r) = r2

r2+γ2 , one ends with
the following regular metric

ds2 = −
(
1− µr3

(r2 + γ2)2

)
dt2 +

dr2(
1− µr3

(r2+γ2)2

) + r2dΣ2
2

solution of the DHOST theory K (X ), G (X ), A1(X ) and
A3(X ) parameterized by

A3 = −4GX

X
+

2A1X

X
+

16H

X 2
A1 =

H + G

X

with

H(X ) =
1

X 2(4X − 1)
, G(X ) = −

3
(
8X 2 − 8X

)
X 2(4 − 1)2

, K(X ) =
8
(
16X 4 − 54X3 + 63X 2 − 28X + 3

)
X 3γ2 (1 − 4X )2

,



Regular black
holes via the
Kerr-Schild
construction
in DHOST
theories

Mokhtar
Hassaine

Construction of regular black hole solutions for
DHOST theories

• In a similar way, one can show that the regular Hayward black
hole metric [S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)]

ds2 = −
(
1− µr2

r3 + γ2

)
dt2 +

dr2(
1− µr2

r3+γ2

) + r2dΣ2
2

is solution of DHOST theory with X (r) = r3/(r3 + γ2) and
λ = 1 and for

H(X ) =
1

X 2
, G (X ) =

(5− 6X )

X 2
,

K (X ) =
(1− X )2(3X − 5)

γ
4
3X 3

(
X

1− X

) 1
3

,
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Conclusions and Works in Progress

1 Extension of the Kerr-Schild generating method for
shift-invariant DHOST theories by requiring X to remain
invariant under the KS transf.

2 The possibility of having BH solutions with different fall off
mass term

1

r
e

3
8

∫
dX B(X )

H(X )

For X =cst or B = 0, standard fall off

3 Use the generating method to construct from simple seed
configuration, asymptotically flat regular BHs

4 Extend this solution generating method for other sources
as for example the generalized Proca Lagrangian

L = G2(X ,F ) + G4(X )R + G4,X

(
(∇µA

µ)2 −∇µAν∇νAµ
)

with X = −AµA
µ/2 and F is the standard Maxwell term

F = −FµνF
µν
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Works in Progress for Spinning DHOST black holes

1 Spinning DHOST solutions that could be obtained via the
Kerr-Schild ansatz : find the appropriate shear free and
null congruence that will allow a Kerr-Schild representation
of the spinning solutions with a kinetic scalar field that
remains unchanged along the Kerr-Schild transformation.

2 ∃ a stealth solution defined on the Kerr metric for a
specific DHOST theory [C. Charmousis, M. Crisostomi, R. Gregory and

N. Stergioulas, Phys. Rev. D 100, no. 8, 084020 (2019)]

ds2Kerr = ds20 + µH(r , θ)l ⊗ l , X = X0

3 Some results in D = 3 have been obtained [O. Baake,

M. Bravo-Gaete and M. Hassaine, Phys. Rev. D 102, no.2, 024088 (2020)], see the talk
of Olaf Baake on August 8.


