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• BMS CHARGES, HARD AND SOFT BMS CHARGES 

• BMS CHARGE CONSERVATION LAWS

• DUAL  CHARGES

• DUAL GAUGE INVARIANCE? 

• TAUB-NUT AS WU-YANG?

• A “BETTER LORENTZ TRANSFORMATION”

• CONSISTENCY OF THE NEW LORENTZ ALGEBRA
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BOUNDARY CONDITION 

ONE POLARIZATION ONLY:  C(z,z*)  IS REAL

WITH THIS CHOICE SUPERTRANSLATIONS ACT BY LIE 
DERIVATIVES ON THE METRIC 

BOUNDARY GRAVITON

lim
u!�1

Czz = D2
zC(z, z⇤)

{T (f), Czz} = fNzz � 2D2
zf, {T (f), C} = �2f

SO SUPERTRANSLATIONS ACT AS DIFFEOMORPHISMS:  
z DEPENDENT TRANSLATIONS IN RETARDED TIME u 

u ! u+ f(z, z⇤)
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HERE WE ASSUMED THAT 

BUT A MORE GENERAL 
BOUNDARY CONDITION IS POSSIBLE
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WE WANT TO STUDY IN PARTICULAR THE CASE 

BMS SUPERTRANSLATIONS DO NOT PRESERVE THIS 
BOUNDARY CONDITION BUT 

DUAL SUPERTRANSLATIONS DO

THE GENERATOR OF DUAL SUPERTRANSLATIONS IS 

C = �C⇤

C(z, z⇤) ! C(z, z⇤)� 2f(z, z⇤), f = �f⇤

DUAL SUPERTRANSLATIONS DO NOT ACT ON MATTER 
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PROPERTIES OF DUAL SUPERTRANSLATIONS

• CHARGE CONSERVED BY IMPOSING ANTIPODAL 
MATCHING CONDITIONS

• ZERO MODE [f(z,z*)=constant] IS  A TOPOLOGICAL 
INVARIANT (SIMILARLY TO THE MAGNETIC CHARGE)

�M(f) =
i

16⇡G

Z

I+
�

d2z�zz⇤
f(z, z⇤)(D2

z⇤�Czz �D2
z�Cz⇤z⇤) = 0

GLOBALLY DEFINED 
ON 2-SPHERE



PROPERTIES OF DUAL SUPERTRANSLATIONS

• CHARGE CONSERVED BY IMPOSING ANTIPODAL 
MATCHING CONDITIONS
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GLOBALLY DEFINED 
ON 2-SPHERE

DUAL SUPERTRANSLATIONS ACT TRIVIALLY ON S-MATRIX 
ELEMENTS. 

CONSISTENT WITH IT BEING A GAUGE INVARIANCE
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WHY NOT CHOOSE THE GAUGE 
Im C=0

AND PRETEND THAT DUAL SUPERTRANSLATIONS NEVER 
EXISTED?
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GAUGE INVARIANCE. 

WHY NOT CHOOSE THE GAUGE 
Im C=0

AND PRETEND THAT DUAL SUPERTRANSLATIONS NEVER 
EXISTED?

WE COULD HAVE ASKED THE SAME QUESTION IN THE 
ABELIAN HIGGS MODEL.

THERE, THE GAUGE  CHOICE

CREATES A FAKE SINGULARITY FOR A.N.O. STRINGS, WHICH 
ARE INSTEAD REGULAR WHEN THE ASYMPTOTIC BEHAVIOR 

OF THE FIELDS IS

Im� = 0

lim
r!1

A✓(r, ✓) = n lim
r!1

�(r, ✓) = vein✓
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PERIODICITY IN ANGLE IMPLIES CLOSED TIMELIKE CURVES 
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ASYMPTOTIC METRIC IS 
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AT EQUATOR THE TWO METRICS ARE EQUIVALENT UP TO A 
DUAL SUPERTRANSLATION
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NONSINGULAR (AT LEAST ASYMPTOTICALLY) 

THERE IS NO PERIODIC IDENTIFICATION OF TIME BECAUSE 
HERE SPACETIME COORDINATES ARE DEFINED GLOBALLY.

IT IS INSTEAD THE METRIC THAT IS A SECTION OF A 
NONTRIVIAL BUNDLE



AT EQUATOR THE TWO METRICS ARE EQUIVALENT UP TO A 
DUAL SUPERTRANSLATION

CS = CN + 8il log |z|
BY ADDING AN IMAGINARY PART TO THE BOUNDARY 

GRAVITON AND THEN REMOVING IT BY GAUGE INVARIANCE 
WE GAINED SOMETHING: WE MADE TAUB-N.U.T. 

NONSINGULAR (AT LEAST ASYMPTOTICALLY) 

THERE IS NO PERIODIC IDENTIFICATION OF TIME BECAUSE 
HERE SPACETIME COORDINATES ARE DEFINED GLOBALLY.

IT IS INSTEAD THE METRIC THAT IS A SECTION OF A 
NONTRIVIAL BUNDLE

NO CLOSED TIMELIKE CURVES IN EITHER TAUB OR N.U.T. 
REGIONS WHEN

m/l 
p

5/27



THE (REAL) BOUNDARY GRAVITON CAN BE EXPANDED IN 
SPHERICAL HARMONICS  ON THE CELESTIAL SPHERE. 

THE BOUNDARY CONDITION THEN BECOMES

C+
lm = C�

lm

BACK TO BMS SUPERTRANSLATIONS

HERE FUTURE QUANTITIES DEFINED ON I+ CARRY THE 
SUPERSCRIPT (+) AND PAST QUANTITIES ON I- CARRY A (-)

THE SUPERTRANSLATION CHARGES CAN ALSO BE EXPANDED 
IN SPHERICAL HARMONICS. 

CHARGE CONSERVATION THEN BECOMES

Q+
lm = Q�

lm
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A CANONICAL TRANSFORMATION

DEFINE IT AS FOLLOWS

EXPLICITLY

U = exp[�i
1X

l=2

lX

m=�l

Q+
h lmC+

lm]

DEFINE DRESSED VARIABLES BY THE SAME CANONICAL 
TRANSFORMATION

UN+
ABU

�1 ⌘ N̂+
AB

KEY PROPERTY: THEY COMMUTE WITH THE BMS CHARGES

[N̂+
AB , Q

+
lm] = U [N+

AB , Q
+
s lm]U�1 = 0

SO                               FORM A COMPLETE SET OF 
CANONICAL VARIABLES WITH CCR 

N̂+
AB , Q

+
lm, C+

lm

UQ+
s lmU�1 = Q+

lm UC+
lmU�1 = C+

lm
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HEISENBERG TIME EVOLUTION INDEPENDENT OF ALL IR 
DEGREES OF FREEDOM!

FACTORIZATION OF HEISENBERG TIME EVOLUTION IMPLIES 
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HEISENBERG TIME EVOLUTION INDEPENDENT OF ALL IR 
DEGREES OF FREEDOM!

FACTORIZATION OF HEISENBERG TIME EVOLUTION IMPLIES 
THAT IN A BASIS OF EIGENSTATES OF DRESSED VARIABLES,  

THE (SCHROEDINGER) TIME EVOLUTION  IS

CAN WE CONSIDER THE BOUNDARY GRAVITON A LABEL OF A 
SUPERSELECTION SECTOR? NO BECAUSE BOOSTS AND 

ROTATIONS ACT AS CKVs ON THE CELESTIAL SPHERE, SO 

[Q±
lm,⌦] = �i

@⌦

@C±
lm

= 0 [C±
lm,⌦] = 0 ! ⌦ = ⌦(N̂)

⌦

X

A

CA|Ai|Clmi =
X

AB

CA⌦
A
B |Bi|Clmi

A,B = eigenstates of complete basis of dressed variables

R|Clmi 6= |Clmi
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THE ORIGIN OF THIS PROBLEM IS SIMPLE: LORENTZ DOES 
NOT COMMUTE WITH SUPERTRANSLATIONS. 

HENCE:  ALL          HAVE ZERO ENERGY, 
BUT THEY ARE NOT LORENTZ INVARIANT

|Clmi

CAN WE DO BETTER? CAN WE DEFINE A LORENTZ THAT 
DOES NOT ACT ON THE SOFT VARIABLES AND STILL HAS THE 

CORRECT ACTION ON HARD VARIABLES?

KEY IDEA OF arxiv:1808.02987 [hep-th]:
USE DRESSED VARIABLES. 

THAT PAPER GAVE AN IMPLICIT CONSTRUCTION OF THE 
LORENTZ GENERATORS. 

NOW WE CAN BE EXPLICIT.
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RADIATIVE VARIABLES AS  

{J( ), N̂AB} = L N̂AB
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CONCLUSIONS
• A DUAL SUPERTRANSLATION CHARGE CAN BE DEFINED 

BY CHANGING THE REALITY CONDITION ON THE 
BOUNDARY GRAVITON IN ASYMPTOTICALLY FLAT 
SPACETIMES. 

• IT SEEMS POSSIBLE  TO INTERPRET THE SYMMETRY 
GENERATED BY DUAL SUPERTRANSLATION AS A GAUGE 
SYMMETRY

• THE GAUGE SYMMETRY CAN BE USE TO MAKE THE 
BOUNDARY GRAVITON VANISH LOCALLY ON THE 
CELESTIAL SPHERE

• THE BOUNDARY GRAVITON MAY NEVERTHELESS DEFINE 
A NONTRIVIAL BUNDLE ON THE CELESTIAL SPHERE. THIS 
INTERPRETATION MAKES THE TAUB-N.U.T. METRIC 
(ASYMPTOTICALLY ) NONSINGULAR AND FREE OF CTC 
FOR A CERTAIN RANGE OF PARAMETERS



• PREVIOUS WORK HAS SHOWN THAT THERE EXISTS A 
CANONICAL TRANSFORMATION THAT MAKES 
RADIATIVE VARIABLES COMMUTE WITH BMS CHARGES 
AND BOUNDARY GRAVITONS 

• USING THIS CANONICAL TRANSFORMATION WE 
MADE EXPLICIT —FOR THE ROTATION SUBGROUP OF 
LORENTZ— A PROPOSAL FOR A NEW DEFINITION OF 
LORENTZ CHARGES MADE RECENTLY BY 
JAVADINEZHAD KOL AND MYSELF

• THE NEW CHARGES COMMUTE WITH THE 
BOUNDARY GRAVITON AND THE BMS CHARGES BUT 
ACT IN THE USUAL WAY ON RADIATIVE VARIABLES.

• THE EXPLICIT CONSTRUCTION OF BOOSTS AND 
VERIFICATION OF CLOSURE OF THE LORENTZ 
ALGEBRA IS BEING WORKED OUT AT PRESENT (WITH 
JAVADINEZHAD AND KOL)


