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BOUNDARY CONDITION
lim C,, = D?C(z,z")

U— — 00
BOUNDARY GRAVITON

ONE POLARIZATION ONLY: C(z,z*) IS REAL

WITH THIS CHOICE SUPERTRANSLATIONS ACT BY LIE
DERIVATIVES ON THE METRIC

{T(f),C.,} = fN,, —2D?*f.  {T(f),C} = —2f

SO SUPERTRANSLATIONS ACT AS DIFFEOMORPHISMS:
z DEPENDENT TRANSLATIONS IN RETARDED TIME u

u—u—+ f(z,2")
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HERE WE ASSUMED THAT
C=C"

BUT A MORE GENERAL
BOUNDARY CONDITION IS POSSIBLE
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WE WANT TO STUDY IN PARTICULAR THE CASE
C=-C"

BMS SUPERTRANSLATIONS DO NOT PRESERVE THIS
BOUNDARY CONDITION BUT

DUAL SUPERTRANSLATIONS DO

C(z,2%) = C(z,2") —2f(z,27), f=—f"
THE GENERATOR OF DUAL SUPERTRANSLATIONS IS

(

M(f) = /1+ dud®zv**" f(z,2*)(D3-N.. = DIN.- )

16w

DUAL SUPERTRANSLATIONS DO NOT ACT ON MATTER
FIELDS SO THEY ARE NOT DIFFEOMORPHISMS
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PROPERTIES OF DUAL SUPERTRANSLATIONS

o CHARGE CONSERVED BY IMPOSING ANTIPODAL
MATCHING CONDITIONS

o ZERO MODE [f(z,z*)=constant] IS ATOPOLOGICAL
INVARIANT (SIMILARLY TO THE MAGNETIC CHARGE)

SM(f) = — /I A2y f(2,27)(D26C.. — DISC.es) = 0

B 16wG
GLOBALLY DEFINED
ON 2-SPHERE

DUAL SUPERTRANSLATIONS ACT TRIVIALLY ON S-MATRIX
ELEMENTS.

CONSISTENT WITH IT BEING A GAUGE INVARIANCE
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LET US DO THIS LOGICAL JUMP AND ASSUMETHAT IT ISA
GAUGE INVARIANCE.
WHY NOT CHOOSE THE GAUGE
Im C=0
AND PRETEND THAT DUAL SUPERTRANSLATIONS NEVER
EXISTED?

WE COULD HAVE ASKED THE SAME QUESTION IN THE
ABELIAN HIGGS MODEL.
THERE, THE GAUGE CHOICE

Im¢p =20

CREATES A FAKE SINGULARITY FOR A.N.O. STRINGS,WHICH
ARE INSTEAD REGULAR WHEN THE ASYMPTOTIC BEHAVIOR
OF THE FIELDS IS
lim Ag(r,0) =n lim &(r,0) = ve'™"

T—00 T— 00
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ds® = —f(r)(dt+ 2l cosfdyp)? - - (7% 4 1%)(d6? + sin® Odp?)
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r2 4+ [?

fr) =
THERE ISA SINGULARITYAT 6 =0,
REMOVED BY COORDINATE TRANSFORMATION

L=ty — 2o, ogegg; t=tg+ 2o, ggegw

NEW METRIC DEFINED IN TWO PATCHES.
JOINED AT EQUATOR BY A DIFFEOMORPHISM

tn =ts + 4l
PERIODICITY IN ANGLE IMPLIES CLOSED TIMELIKE CURVES
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IF DUAL SUPERTRANSLATIONS ARE A GAUGE SYMMETRY
WE HAVE AN ALTERNATIVE
THAT AVOIDS CTCs AND SINGULARITIES

2 2
ds% = —f(r) (dt—4l siand<p> | Jff() - (r? + 12)(d6? + sin® Odp?)
T
2 2 0 S dr? 2 | 72 2 | in2 2
dse = —f(r) | dt + 4l cos idgo | ) - (r® 4+ 17)(d6” + sin” 0dp*)

SAME COORDINATES EVERYWHERE BUT METRIC JOINED AT
EQUATOR BY DUAL SUPERTRANSLATION

ASYMPTOTIC METRIC IS

2 dr?dzdz”
ds? = —du? — 2dudr + " du® + — 27 rD2Cdz* +rD?.C*dz** + ...
r (1+ 2z2*)?
WITH

Cn = —4illog(1 + z27), C's = 8illog(1 + 1/22")
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AT EQUATOR THE TWO METRICS ARE EQUIVALENT UPTO A
DUAL SUPERTRANSLATION

Cs = Cn + 8illog|z]

BY ADDING AN IMAGINARY PART TO THE BOUNDARY
GRAVITON AND THEN REMOVING IT BY GAUGE INVARIANCE
WE GAINED SOMETHING:WE MADE TAUB-N.U.T.
NONSINGULAR (AT LEAST ASYMPTOTICALLY)

THERE IS NO PERIODIC IDENTIFICATION OF TIME BECAUSE
HERE SPACETIME COORDINATES ARE DEFINED GLOBALLY.

IT IS INSTEAD THE METRIC THAT ISA SECTION OF A
NONTRIVIAL BUNDLE

NO CLOSED TIMELIKE CURVES IN EITHER TAUB OR N.U.T.
REGIONS WHEN

m/l < /5/27




BACK TO BMS SUPERTRANSLATIONS

THE (REAL) BOUNDARY GRAVITON CAN BE EXPANDED IN
SPHERICAL HARMONICS ON THE CELESTIAL SPHERE.
THE BOUNDARY CONDITION THEN BECOMES

C;n — Cl:n,
HERE FUTURE QUANTITIES DEFINED ON |+ CARRY THE
SUPERSCRIPT (+) AND PAST QUANTITIES ON |- CARRY A (-)

THE SUPERTRANSLATION CHARGES CAN ALSO BE EXPANDED
IN SPHERICAL HARMONICS.

CHARGE CONSERVATION THEN BECOMES
Q. =Q;.
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A CANONICAL TRANSFORMATION
DEFINE IT AS FOLLOWS
vt v'=Q UCcru'=cCt
EXPLICITLY

U = exp|— Z Z Q;{lmCﬁL

[=2 m=—1

DEFINE DRESSED VARIABLES BY THE SAME CANONICAL
TRANSFORMATION

UNXBU_1 = ]\ATXB
KEY PROPERTY: THEY COMMUTEWITH THE BMS CHARGES
[NZB7Ql_I;n] = U|N B?Qs lm] F=0

SO Ni,, Qf  C!' FORMA COMPLETE SET OF
CANONICAL VARIABLES WITH CCR
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FACTORIZATION OF IR DYNAMICS ON
OPERATORS

USE THE HEISENBERG PICTURE: OPERATORS EVOLVE IN TIME,
STATES DO NOT

Ot =Q7107Q

BMS CHARGES AND BOUNDARY GRAVITONS COMMUTEWITH
TIME EVOLUTION OPERATOR BECAUSE OF MATCHING

CONDITIONS
Q,=91Q,,0=Q,, CI =9C, 0=C,,
N 0
CCR: @, = Zac;L
CCR+MATCHING CONDITIONS:
n - 0f) N A
[Qiq_naﬂ] — Z@C: — () [C’l‘;n,ﬂ] =0—>Q=Q(N)

Im



HEISENBERG TIME EVOLUTION INDEPENDENT OFALL IR
DEGREES OF FREEDOM!

() )
0 a__ =0 Cr- .9 =0—Q=Q(N)
oC

Im

Q> ] =
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HEISENBERG TIME EVOLUTION INDEPENDENT OFALL IR
DEGREES OF FREEDOM!

N = 01
Q- Q] = 80‘: = () Cr Q] =0—Q = Q(N)

Im

FACTORIZATION OF HEISENBERG TIME EVOLUTION IMPLIES
THAT IN A BASIS OF EIGENSTATES OF DRESSED VARIABLES,
THE (SCHROEDINGER) TIME EVOLUTION IS

QY " CalA)|Cim) ZCAQ B)|Cim )
A

A, B = eigenstates of complete basis of dressed variables

CAN WE CONSIDER THE BOUNDARY GRAVITON A LABEL OF A
SUPERSELECTION SECTOR? NO BECAUSE BOOSTS AND
ROTATIONS ACT AS CKVs ON THE CELESTIAL SPHERE, SO

R|Clm> 7£ ‘Clm>
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THE ORIGIN OF THIS PROBLEM IS SIMPLE: LORENTZ DOES
NOT COMMUTE WITH SUPERTRANSLATIONS.

HENCE: ALL |Cin) HAVE ZERO ENERGY,
BUT THEY ARE NOT LORENTZ INVARIANT

CANWE DO BETTER? CANWE DEFINE A LORENTZ THAT
DOES NOT ACT ON THE SOFT VARIABLES AND STILL HAS THE
CORRECT ACTION ON HARD VARIABLES?

KEY IDEA OF arxiv:1808.02987 [hep-th]:
USE DRESSED VARIABLES.

THAT PAPER GAVE AN IMPLICIT CONSTRUCTION OF THE
LORENTZ GENERATORS.
NOW WE CAN BE EXPLICIT.
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COMMUTES WITH SOFT VARIABLES AND ACTS ON
RADIATIVEVARIABLES AS

{J(9),Nap} = LeNasp



CONCLUSIONS
A DUAL SUPERTRANSLATION CHARGE CAN BE DEFINED

BY CHANGING THE REALITY CONDITION ON THE
BOUNDARY GRAVITON IN ASYMPTOTICALLY FLAT
SPACETIMES.

I'T SEEMS POSSIBLE TO INTERPRET THE SYMMETRY
GENERATED BY DUAL SUPERTRANSLATION AS A GAUGE

SYMMETRY

THE GAUGE SYMMETRY CAN BE USE TO MAKE THE
BOUNDARY GRAVITON VANISH LOCALLY ON THE
CELESTIAL SPHERE

THE BOUNDARY GRAVITON MAY NEVERTHELESS DEFINE
A NONTRIVIAL BUNDLE ON THE CELESTIAL SPHERE.THIS
INTERPRETATION MAKES THE TAUB-N.U.T. METRIC
(ASYMPTOTICALLY ) NONSINGULAR AND FREE OF CTC
FOR A CERTAIN RANGE OF PARAMETERS



PREVIOUS WORK HAS SHOWN THAT THERE EXISTS A
CANONICAL TRANSFORMATION THAT MAKES
RADIATIVE VARIABLES COMMUTE WITH BMS CHARGES
AND BOUNDARY GRAVITONS

USING THIS CANONICAL TRANSFORMATION WE
MADE EXPLICIT —FOR THE ROTATION SUBGROUP OF
LORENTZ— A PROPOSAL FOR A NEW DEFINITION OF
LORENTZ CHARGES MADE RECENTLY BY
JAVADINEZHAD KOL AND MYSELF

THE NEW CHARGES COMMUTEWITH THE
BOUNDARY GRAVITON AND THE BMS CHARGES BUT
ACT IN THE USUAL WAY ON RADIATIVE VARIABLES.

THE EXPLICIT CONSTRUCTION OF BOOSTS AND
VERIFICATION OF CLOSURE OF THE LORENTZ
ALGEBRA IS BEING WORKED OUT AT PRESENT (WITH
JAVADINEZHAD AND KOL)



