2024.08.22 7th International Conference on Holography and String Theory in Da Nang@ Da Nang, Vietnam

Nonlinear conducting in holographic Weyl semi-metal from probe branes

Masataka Matsumoto (Shanghai Jiao Tong University)

Collaboration with Mirmani Mirjalali and Ali Vahedi, arXiv: 2405.06484 [hep-th]

❑**Introduction**

- **BAbout Weyl semi-metals**
- **Examplest field theory for Weyl semi-metals**

❑**Method**

- **EXA:** Holographic models for Weyl semi-metals
- **Holographic Weyl semi-metals from probe branes**

❑**Results**

- Nonlinear conductivity $(T = 0)$
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- **Exercise Critical phenomena**

❑**Introduction**

- **Example 1 About Weyl semi-metals**
- **E** Simplest field theory for Weyl semi-metals

❑**Method**

- **EXA:** Holographic models for Weyl semi-metals
- **Example 11 Holographic Weyl semi-metals from probe branes**

❑**Results**

- \blacksquare Nonlinear conductivity $(T = 0)$
- **Nonlinear conductivity (** $T \neq 0$ **) and nonequilibrium phase transitions**
- **Exercical phenomena**

Introduction: Weyl semi-metals

- ➢ Weyl nodes in momentum space
	- Two electric bands touch at isolated points in momentum space at the Fermi surface.
	- Time reversal or parity symmetry breaking split the Dirac fermion into left- and righthanded Weyl fermions.
- ➢ Transport response and chiral anomaly
	- The chiral anomaly is an unique property of a Weyl semi-metal.
	- This leads to interesting transport properties, such as negative magneto-resistivity, chiral magnetic effect, and anomalous Hall effect.

Figures from Lv, etal., (2015).

Negative magnetoresistivity in TaAs

Huang, etal., (2015).

Introduction: Simplest field theory for Weyl semi-metals

❑ Free Dirac fermion with non-dynamical axial vector field

$$
\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m + A_{j}^{5} \gamma^{j} \gamma^{5} \right) \psi
$$

Choosing $A_z^5 = b/2$, the energy of the Dirac fermion is

$$
\epsilon = \pm \sqrt{k_x^2 + k_y^2 + \left(\frac{b^2}{4} \pm \sqrt{k_z^2 + m^2}\right)}
$$

 m/b | $<$ 2: two levels are crossed (Weyl nodes) \rightarrow Weyl semi-metal m/b | $>$ 2: energy gap appears \rightarrow insulator

- ➢ Quantum phase transition is second order
- ➢ Anomalous Hall effect

$$
J^{y} = \sigma_{yx} E_{x}, \qquad \sigma_{yx} = -\sigma_{xy} = \frac{1}{4\pi^{2}} \sqrt{b^{2} - 4m^{2}} \Theta(|b| - 2|m|)
$$

❑**Introduction**

- **E** About Weyl semi-metals
- **Examplest field theory for Weyl semi-metals**

❑**Method**

- **Holographic models for Weyl semi-metals**
- **Holographic Weyl semi-metals from probe branes**

❑**Results**

- \blacksquare Nonlinear conductivity $(T = 0)$
- **Nonlinear conductivity (** $T \neq 0$ **) and nonequilibrium phase transitions**
- **Exercical phenomena**

Method: Holographic models for Weyl semi-metals

❑ Bottom-up approach

➢ Einstein-Hilbert gravity in (4+1)-dim AdS, complex scalar, two U(1) gauge fields with Chern-Simons term Landsteiner, Liu (2016). Landsteiner, Liu, Sun (2016).

❑ Top-down approach

➢ Probe brane model

e.g.) D3/D7 model

Method: Holographic Weyl semi-metals from probe branes

❑ Holographic Weyl semi-metals in D3/D7 model

 $f(u) = 1 - \frac{u^4}{u_{\rm H}^4}$, $h(u) = 1 + \frac{u^4}{u_{\rm H}^4}$ ➢ Background metric: $u = u_H$: Black hole horizon $u = 0$: AdS boundary

➢ Probe D7-brane action:

$$
S_{D7} = -T_{D7} \int d^8 \xi \sqrt{-\det(g_{ab} + (2\pi \alpha')F_{ab})} + \frac{(2\pi \alpha')^2}{2} T_{D7} \int P[C^{(4)}] \wedge F \wedge F
$$

Dirac-Infeld-Born (DBI) action

Wess-Zumino term \rightarrow axial anomaly

4-form:
$$
C^{(4)} = \frac{L^4}{u^4} dt \wedge dx \wedge dy \wedge dz - L^4 \cos^4 \theta d\psi \wedge \omega(S^3)
$$

D₃/D₇-branes intersection:

- Two scalars determine the configuration of D7 brane in the AdS geometry.
- ψ introduces the finite contribution of the Wess-Zumino term and axial anomaly.

Method: Holographic Weyl semi-metals from probe branes

near

Ansatz of scalars for WSM: $\theta = \theta(u)$, $\psi = bz$ Fadafan, O'Bannon, Rodgers, Russel (2021).

$$
\Rightarrow \quad \sin \theta(u) = mu + cu^3 + \cdots
$$

 $u = 0$

 \bullet m : quark mass, c : quark condensate

• The potential term for the complex hypermultiplet: $V \supset \bar\psi_f\left(m-\frac{b}{2}\gamma^z\gamma^5\right)\psi_f$

External axial gauge potential: $A_z^5 = b/2$

Solutions of $\theta(u)$ and phase transitions

Method: Holographic Weyl semi-metals from probe branes

Our interest: How response with respect to an external electric field?

► Ansatz of gauge fields:
$$
A_x = \frac{-Et}{dt} + a_x(u)
$$
, $A_y = a_y(u)$
\nElectric field
\n
$$
a_x(u) = a_x^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\nnear $u = 0$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_x}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,
$$
\n
$$
a_y(u) = a_y^{(0)} + \frac{j
$$

The current density shows a highly nonlinear response with respect to E . We focus on the only longitudinal current density.

❑**Introduction**

- **E** About Weyl semi-metals
- **Examplest field theory for Weyl semi-metals**

❑**Method**

Holographic models for Weyl semi-metals

Example 11 Holographic Weyl semi-metals from probe branes

❑**Results**

- Nonlinear conductivity $(T = 0)$
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- **Exercise Critical phenomena**

Results: Nonlinear conductivity $(T = 0)$

➢ J-E characteristics at zero temperature

- For small E, the current is well described by the analytic form, $J = E^{3/2}$.
- Changing m/b , there is a "reconnection" transition between two branches.
- It is due to the competition between the WSM-like behavior and ordinary conducting behavior.

 \triangleright J-E characteristics at finite temperature

- For large m/b and increasing T/b , one branch cannot be found.
- The nonlinear behavior of J-E characteristics is similar to the system without b .
- Given *I* fixed, *E* is multivalued. \rightarrow Current-driven non-equilibrium phase transitions

In analogy with equilibrium phase transitions and following the previous analysis, define order parameter.

Nakamura (2012). MM, Nakamura (2018)

Van der Waals theory

To study critical phenomena, define the critical exponents:

$$
\Delta \sigma \propto |T - T_c|^{\beta}, \quad (T > T_c)
$$

$$
\sigma - \sigma_c| \propto |J - J_c|^{1/\delta}, \quad (T = T_c)
$$

$$
\begin{array}{ll}\n\text{1\text{-}Ferromagnetic phase transition} \\
\text{1\text{-}} & \Delta M \propto |T - T_c|^{\beta}, \quad (T < T_c) \\
\text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{2\text{-}} & \text{2\text{-}} & \text{2\text{-}} & \text{2\text{-}} & \text{2\text{-}} & \text{2\text{-}} \\
\text{3\text{-}} & \text{3\text{-}} & \text{4\text{-}} & \text{5\text{-}} & \text{2\text{-}} & \text{2\text{-}} \\
\text{4\text{-}} & \text{5\text{-}} & \text{5\text{-}} & \text{6\text{-}} & \text{6\text{-}} & \text{2\text{-}} & \text{2\text{-}} \\
\text{5\text{-}} & \text{6\text{-}} & \text{6\text{-}} & \text{6\text{-}} & \text{6\text{-}} & \text{6\text{-}} & \text{6\text{-}} \\
\text{6\text{-}} & \text{7\text{-}} & \text{8\text{-}} & \text{8\text{-}} & \text{8\text{-}} & \text{8\text{-}} \\
\text{7\text{-}} & \text{8\text{-}} & \text{9\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{8\text{-}} & \text{9\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{9\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{10\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{11\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{12\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{13\text{-}} & \text{1\text{-}} & \text{1\text{-}} & \text{1\text{-}} \\
\text{14\text{-}} & \text{
$$

➢ In the case of non-WSM system, the values of critical exponents agree with the mean-field values.

$$
\beta=\frac{1}{2},\quad \delta=3
$$

Nakamura (2012). MM, Nakamura (2018)

Compute the critical exponents

 $\beta \approx 0.4941, \quad \delta \approx 3.087$

which also agree with the mean field values

$$
\beta=\frac{1}{2},\quad \delta=3
$$

- \triangleright Even in the WSM system, the critical exponents of current-driven phase transitions agree with the mean-field values.
- \triangleright The axial gauge potential does not change the critical behavior of this phase transition.

❑**Introduction**

- **E** About Weyl semi-metals
- **Examplest field theory for Weyl semi-metals**

❑**Method**

- **EXA:** Holographic models for Weyl semi-metals
- **Example 11 Holographic Weyl semi-metals from probe branes**

❑**Results**

- \blacksquare Nonlinear conductivity $(T = 0)$
- **Nonlinear conductivity (** $T \neq 0$ **) and nonequilibrium phase transitions**
- **Exercise Critical phenomena**

Summary

❑ Study the nonlinear J-E characteristics in the holographic Weyl semi-metals from the probe brane model.

- ❑ The "reconnection" transition is found due to the competition between the WSMlike behavior and ordinary conducting behavior.
- ❑ At finite temperature, we study the critical phenomena of the current-driven phase transition emerged by the nonlinear behavior.

Outlook

❑ Dynamical stability of the two branches? ❑ Magnetic response? □ Experimental realization? ❑ …

