2024.08.22 7th International Conference on Holography and String Theory in Da Nang@ Da Nang, Vietnam

Nonlinear conducting in holographic Weyl semi-metal from probe branes

Masataka Matsumoto (Shanghai Jiao Tong University)

Collaboration with Mirmani Mirjalali and Ali Vahedi, arXiv: 2405.06484 [hep-th]

- About Weyl semi-metals
- Simplest field theory for Weyl semi-metals

- Holographic models for Weyl semi-metals
- Holographic Weyl semi-metals from probe branes

- Nonlinear conductivity (T = 0)
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- Critical phenomena

- About Weyl semi-metals
- Simplest field theory for Weyl semi-metals

- Holographic models for Weyl semi-metals
- Holographic Weyl semi-metals from probe branes

- Nonlinear conductivity (T = 0)
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- Critical phenomena

Introduction: Weyl semi-metals

- Weyl nodes in momentum space
 - Two electric bands touch at isolated points in momentum space at the Fermi surface.
 - Time reversal or parity symmetry breaking split the Dirac fermion into left- and righthanded Weyl fermions.
- Transport response and chiral anomaly
 - The chiral anomaly is an unique property of a Weyl semi-metal.
 - This leads to interesting transport properties, such as negative magneto-resistivity, chiral magnetic effect, and anomalous Hall effect.

Negative magnetoresistivity in TaAs

Huang, etal., (2015).

Introduction: Simplest field theory for Weyl semi-metals

□ Free Dirac fermion with non-dynamical axial vector field

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m + A_j^5 \gamma^j \gamma^5 \right) \psi$$

Choosing $A_z^5 = b/2$, the energy of the Dirac fermion is

$$\epsilon = \pm \sqrt{k_x^2 + k_y^2 + \left(\frac{b^2}{4} \pm \sqrt{k_z^2 + m^2}\right)}$$

|m/b| < 2: two levels are crossed (Weyl nodes) **→ Weyl semi-metal** |m/b| > 2: energy gap appears **→ insulator**

- Quantum phase transition is second order
- Anomalous Hall effect

$$J^{y} = \sigma_{yx} E_{x}, \qquad \sigma_{yx} = -\sigma_{xy} = \frac{1}{4\pi^{2}} \sqrt{b^{2} - 4m^{2}} \Theta(|b| - 2|m|)$$

- About Weyl semi-metals
- Simplest field theory for Weyl semi-metals

- Holographic models for Weyl semi-metals
- Holographic Weyl semi-metals from probe branes

- Nonlinear conductivity (T = 0)
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- Critical phenomena

Method: Holographic models for Weyl semi-metals

Bottom-up approach

Einstein-Hilbert gravity in (4+1)-dim AdS, complex scalar, two U(1) gauge fields with Chern-Simons term
Landsteiner, Liu (2016). Landsteiner, Liu, Sun (2016).

□ Top-down approach

Probe brane model

e.g.) D3/D7 model

Method: Holographic Weyl semi-metals from probe branes

Holographic Weyl semi-metals in D3/D7 model

 $f(u) = 1 - \frac{u^4}{u_{\rm H}^4}, \quad h(u) = 1 + \frac{u^4}{u_{\rm H}^4}$ > Background metric: $ds^2 = \frac{L^2}{u^2} \left(-\frac{f(u)^2}{h(u)} dt^2 + h(u) d\vec{x}^2 \right) + \frac{L^2}{u^2} du^2 + L^2 d\Omega_5^2$ $u = u_H$: Black hole horizon u = 0: AdS boundary

Probe D7-brane action:

$$S_{D7} = -T_{D7} \int d^8 \xi \sqrt{-\det\left(g_{ab} + (2\pi\alpha')F_{ab}\right)} + \frac{(2\pi\alpha')^2}{2} T_{D7} \int P[C^{(4)}] \wedge F \wedge F$$

Dirac-Infeld-Born (DBI) action

Wess-Zumino term
A axial anomaly

4-form:
$$C^{(4)} = \frac{L^4}{u^4} dt \wedge dx \wedge dy \wedge dz - L^4 \cos^4 \theta d\psi \wedge \omega(S^3)$$

D3/D7-branes intersection:

- Two scalars determine the configuration of D7brane in the AdS geometry.
- ψ introduces the finite contribution of the Wess-Zumino term and axial anomaly.

<u>Method</u>: Holographic Weyl semi-metals from probe branes

near

> Ansatz of scalars for WSM: $\theta = \theta(u), \quad \psi = bz$

Fadafan, O'Bannon, Rodgers, Russel (2021).

$$in \theta(u) = mu + cu^3 + \cdots$$

Dual field theory

$$m$$
: quark mass, c : quark condensate

• The potential term for the complex hypermultiplet: $V \supset ar{\psi}_f\left(m - rac{b}{2}\gamma^z\gamma^5
ight)\psi_f$

External axial gauge potential: $A_z^5 = b/2$

> Solutions of $\theta(u)$ and phase transitions

Insulator phase,
$$\sigma_{xy} = 0$$
, for larger m/b .
WSM phase, $\sigma_{xy} \propto b$, for larger m/b .

Method: Holographic Weyl semi-metals from probe branes

Our interest: How response with respect to an external electric field?

Ansatz of gauge fields:
$$A_x = -Et + a_x(u), \quad A_y = a_y(u)$$
Electric field
 $a_x(u) = a_x^{(0)} + \frac{j_x}{2}u^2 + \cdots,$
 $a_y(u) = a_y^{(0)} + \frac{j_y}{2}u^2 + \cdots,$
Dual field theory
 $j_x = \frac{f}{u_x^2}\sqrt{b^2 \sin^2 \theta + \frac{h}{u_x^2}} \cos^3 \theta$ where
 $u_* = \frac{\sqrt{2}}{\pi T}\sqrt{\frac{E}{(\pi T)^2} + \sqrt{1 + \frac{E^2}{(\pi T)^4}}}$
Effective horizon on the probe brane
 $-$ the system is the steady state
The current density shows a highly nonlinear response with respect to *E*.

The current density shows a highly nonlinear response with respect to E. We focus on the only longitudinal current density.

- About Weyl semi-metals
- Simplest field theory for Weyl semi-metals

Holographic models for Weyl semi-metals

Holographic Weyl semi-metals from probe branes

- Nonlinear conductivity (T = 0)
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- Critical phenomena

<u>Results</u>: Nonlinear conductivity (T = 0)

J-E characteristics at zero temperature

- For small *E*, the current is well described by the analytic form, $J = E^{3/2}$.
- Changing m/b, there is a "reconnection" transition between two branches.
- It is due to the competition between the WSM-like behavior and ordinary conducting behavior.

J-E characteristics at finite temperature

- For large m/b and increasing T/b, one branch cannot be found.
- The nonlinear behavior of J-E characteristics is similar to the system without *b*.
- Given J fixed, E is multivalued. \rightarrow <u>Current-driven non-equilibrium phase transitions</u>

In analogy with equilibrium phase transitions and following the previous analysis, define order parameter. Nakamura (2012). M

Nakamura (2012). MM, Nakamura (2018)

	Ferromagnet (equilibrium)	Liquid-Gas (equilibrium)	Our case (Non-eq. steady state)
Order parameter	Magnetization (M)	Density (ρ)	Conductivity (σ)
Control parameter	Temperature (T)	Temperature (T)	Temperature (T)
External source	Magnetic field (H)	Pressure (P)	Current density (J)

To study critical phenomena, define the critical exponents:

$$\Delta \sigma \propto |T - T_c|^{\beta}, \quad (T > T_c)$$

$$\sigma - \sigma_c | \propto |J - J_c|^{1/\delta}, \quad (T = T_c)$$

Ferromagnetic phase transition

$$\Delta M \propto |T - T_c|^{\beta}, \quad (T < T_c)$$

$$|M - M_c| \propto |H - H_c|^{1/\delta}, \quad (T = T_c)$$
:

> In the case of non-WSM system, the values of critical exponents agree with the mean-field values.

$$\beta = \frac{1}{2}, \quad \delta = 3$$

Nakamura (2012). MM, Nakamura (2018)

Compute the critical exponents

 $\beta \approx 0.4941, \quad \delta \approx 3.087$

which also agree with the mean field values

$$\beta = \frac{1}{2}, \quad \delta = 3$$

- Even in the WSM system, the critical exponents of current-driven phase transitions agree with the mean-field values.
- > The axial gauge potential does not change the critical behavior of this phase transition.

- About Weyl semi-metals
- Simplest field theory for Weyl semi-metals

- Holographic models for Weyl semi-metals
- Holographic Weyl semi-metals from probe branes

- Nonlinear conductivity (T = 0)
- Nonlinear conductivity ($T \neq 0$) and nonequilibrium phase transitions
- Critical phenomena

Summary

Study the nonlinear J-E characteristics in the holographic Weyl semi-metals from the probe brane model.

- □ The "reconnection" transition is found due to the competition between the WSMlike behavior and ordinary conducting behavior.
- □ At finite temperature, we study the critical phenomena of the current-driven phase transition emerged by the nonlinear behavior.

<u>Outlook</u>

Dynamical stability of the two branches?
Magnetic response?
Experimental realization?
...

