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Today’s Goal

e How do you define the entanglement entropy (and the reduced
density matrix) in CFTs?

Physics way: H = Hy ®. Hg with a UV cutoff ¢ &~ 1/A.

Mathematics way: The split property of the von Neumann algebra.
One can always “approximate” the algebra of operators using the
matrix algebra.

| will bridge the two understandings.



What is EE in Physics?

What is EE in Mathematics?



What is EE in Physics?



EE in spin systems

e The total state
as p = [0) (4.
e The Hilbert space tensor factorises: H = Ha @ H ;.

= HA =

1) lives in H ~ C?N. The density matrix is defined

e The reduced density matrix is pa = Trz p.

e The Renyi entropy is defined as
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e p, has a discrete spectrum with integer multiplicities.



EE in 2D CFT

e The total state |¢)) lives in H which is (countably) infinitely
dimensional (indentify the two ends x = +00).
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e |F the Hilbert space tensor factorises: H = Ha @ H 4,

) = Z Com |N) ® |m) .

e But we say there is no such a thing. Why?



EE in 2D CFT

e We can still compute the EE in 2D CFTs. We do this with a
“regulator’. What does this mean?

e For example the reduced density matrix for |0):
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e The states are not normalised. For example (0/0) = Z = O(log\).




The replica trick
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e The Renyi entropy is given by the log of Trp,. This is given by the
path integral on an n-sheeted Riemann surface.
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e This can be computed as a two-point function of the twist operator
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The UV scale

e The (exp of the) n-th Renyi EE is

Trpa o< (o_n(—L/2)o,(L/2)) = L~ f(nt3)

e The LHS is dimensionless while the RHS is dimensionful. The
overall normalisation has a scale in it because of dimensional

transmutation (e.g., Zs: = O(logN\)).
e We fix it by introducing the UV (length) scale ¢:
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e You need to regularise to define the EE in QFT.



Confusions

e But. Does this really make sense?

e Quantum information theory wants the (reduced) density matrix to
have discrete spectrum with integer multiplicities after regulating it.

e This means, after diagonalisation (pa is always unitary),
3 n
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e But if we expand at large-n (the replica number)
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e p4, as defined right now, has continuous spectrum even after
regularisation. This is problematic in terms of QulT.



The correct UV regularisation ?

e It seems like one cannot take any regularisation to define EE. We
need ones that are consistent with QulT. What are they?

e And, will they affect the physics (even though they are just UV
cutoffs)?

e Any questions so far?



Another conformal frame

e Let us compute the EE again in a different way.
e We needed to compute the partition function with an n-th branch
cut in the z-frame.

e Now a conformal transformation w = log (iiﬁ) :
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e The geometry is an infinitely long cylinder. It is now clear why the
EE is divergent without a cutoff. There is an IR divergence (with a
continuous entanglement spectrum).

10



Another conformal frame

e There are two ways to regulate it, by chopping the two ends off with
boundary conditions, or identifying the two.

e You get a finite-length cylinder or a torus after regularisation.
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e In the z-frame, the cutoffs are holes around the entangling points,
which are UV.
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Another conformal frame

e It is clear that the cutoff is compatible QulT. For example,
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e In other words, the modular Hamiltonian is the Hamiltonian on an
interval or a circle. This has discrete spectra.

e The reduced density matrix depends on the way you regularise. It's
not just a simple e-dependence.
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Recovering the familiar result

e Is it actually useful in computing the EE? Yes.

e The partition function on a cylinder/torus can be computed in the
modular conjugated frame.

Trph = (Bile s By), or Trph = (ile"5Hs]))

ij
with £ = 2log (£) > 1.
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Recovering the familiar result

e We have

e The Renyi EE is

Troa _ ¢,
(Tr,oA)" 6

The expansion is valid when n < log L /e.
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e The "bare” entanglement spectrum of a QFT is continuous.

e Only certain regularisations are compatible with quantum
information theory as the entanglement spectrum needs to be
discrete.

e The “regularised” entanglement spectrum depends crucially on
regularisation.

e We cannot use our usual intuition about EE in the large replica
number region.

e Any questions?
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What is EE in Mathematics?




Hilbert space tensor factorisation in Maths

e We still need to impose the UV cutoff to define the entanglement
entropy, even in mathematics.

e But they are usually phrased in terms of operator algebras than
quantum states.

e | will explain how mathematicians define EE and then explain how
we should understand it in terms of physics.
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Very quick vN algebra recap

e In the following our spacetime is always compact. | want the Hilbert
space to be separable (so it needs to have a countable dimension).

e We are only interested in hyperfinite algebras (only the ones which
are limits of finite-demsional matrix algebras).

e They are classified into Type I, Il and IlI.

e The split property concerns the relation between Type | and Ill. No
Type Il today.
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Type | algebra

e Type | algebras are just matrix algebras.

e Example 1: Algebra of all bounded operators of a QFT on a
compact space, B(H).

e Just span the Hilbert space H with energy eigenstates. Bounded
operators acting on them are just nice matrices with well-defined
traces.

e The density matrix p is a member of 5(H) and we can define the
entropy properly: S, = Trp".

e Example 2: Algebra of local operators of lattice systems. Sum of
local operators are still just matrices.

e The reduced density matrix of a spin system is a sum of local
operators. So one can define the entanglement entropy without
regularisation: S, = Tr p.
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Type |1l algebra

It is known that one can construct Type Il algebras in the following
way. (Think about it as a definition during the talk.)

e Imagine a spin system with NV qubits. Our subregion A has /2
qubits.
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e One can vary 0 < 8 < oo among different qubits.

The EE is infinite because of N — oc.
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