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§ Introduction

Study spacetime through efforts to construct models which can 
generate spacetime-like objects. 

Quantum gravity is a fundamental problem in theoretical physics.



Tensor Model  ̶Extension of Matrix Model proposed for quantum gravity in D>2.   
                                          Ambjorn et al, NS, Gross et al ’90

Usually considered in the context of Euclidean quantum gravity.

Feynman diagrams ⇆ Simplicial complexes   (Colored tensor model - Gurau ’09) 

Suffers from the dominance of singular spaces like branched polymers 

Seems difficult to regard Tensor Model as quantum gravity in D>2 

Macroscopic spaces ? 



How about Lorentzian version ?

Simplicial quantum gravity seems much more successful in Lorentzian context

Causal Dynamical Triangulation (CDT) ̶ Emergence of macroscopic spacetime
Ambjorn, Jurkiewicz, Loll, PRL 93 (’04) 131301

Canonical(Causal) Tensor Model (CTM)  ̶ A Lorentzian version of Tensor Model
NS ‘12

Formulated as a first-class constrained system in Hamiltonian formalism.

ℋa(Q, P) = ℋab(Q, P) = 0

 form a closed Poisson algebra with variable dependent structure 
coefficients (First-class constraints).
ℋa, ℋab

Follow the structure of ADM formalism of GR.

a, b, … = 1,2,…, N{Qabc, Pdef} = δabc,def



Classical CTM has various connections to GR

• N=1 agrees with the mini-superspace approx. of GR

• In a formal continuum limit   a → ℝD

- Constraint algebra of CTM agrees wth that of ADM

- The classical dynamics of CTM agrees with GR in the Hamilton-Jacobi 
formalism with a certain Hamilton’s principal function 

Quantum CTM may provide a model for quantum gravity

NS, Sato, Phys.Lett.B 732 (2014) 32-35

NS, Sato, JHEP 10 (2015) 109 

Chen, NS, Sato, Phys.Rev.D 95 (2017) 6, 066008  



What do we know about quantum CTM so far ?

•  has an exact solution.ℋ̂a(Q̂, ̂P) |Ψ⟩ = ℋ̂ab(Q̂, ̂P) |Ψ⟩ = 0

Ψ(P) = ⟨P |Ψ⟩ = φ(P)λH/2

φ(P) := ∫𝒞
dϕ̃

N

∏
a=1

dϕa exp [i Pabcϕaϕbϕc − i k ϕ2ϕ̃ + i ϕ̃3]

ℋ̂a = ̂Pabc
̂PbdeQ̂cde − λ Q̂abb + i λH

̂Pabb

λH = (N + 2)(N + 3)/2

 : Cosmological constantλ ∝ k3

Gaurav, NS, Sato, JHEP 01 (2015) 010

Determined by hermiticity of ℋ̂a

λ = ± 1 or 0



 has peaks at Lie-group invariant configurations ( ).   
Strong peaks observed for positive cosmological constant  Not much for 
Ψ(P) ga′ 

a gb′ 

b gb′ 

b Pa′ b′ c′ 
= Pabc, g ∈ G

λ > 0. λ < 0.

N = 3
Can ridges be interpreted as 
spacetime trajectory ?

G1 G2 G3
How are the peaks distributed ?

Obster, NS, PTEP 2018 (2018) 4, 043A01

But  is too small so far.N

What are the dominant Lie-group syms. ?

Emergence of Lie-group symmetries

λ > 0



We need more understanding of the wave function.

φ(P) := ∫ℝN+1

dϕ̃
N

∏
a=1

dϕa exp [i Pabcϕaϕbϕc − i k ϕ2ϕ̃ + i ϕ̃3]
Ai(−k ϕ2)

k > 0 k < 0
Ai(x)

x

Negative cosmological constant case ( ) may be approximated by . 
With this approximation,  has been studied by Monte Carlo simulations.  

k < 0 Ai(x) → exp(kx2)

⟨Ψ |e−α ̂P2 |Ψ⟩

However, positive cosmological constant case ( ) is oscillatory and suffers 
from sign problem, making Monte Carlo simulations very difficult.

k > 0

Takeuchi, NS, Eur.Phys.J.C 80 (2020) 2, 118; Obster, NS, PTEP 2020, 073B06; 
Lionni, NS, PTEP 2019 (2019) 7, 073A01.

 seems a continuous phase transition point.λH = (N + 2)(N + 3)/2



In this talk, we study a similar problem with much simplicity  
to obtain insights for the positive cosmological constant case.

Pabc → Mab

Ψ(M) = ⟨M |Ψ⟩ = φ(M)R

φ(M) := ∫ℝN

N

∏
a=1

dϕa exp [i Mabϕaϕb − (k1 + i k2) ϕ2]

 : Positive cosmological constant case (Oscillatory)k2 ≠ 0

Z = ⟨Ψ |e−α M̂2 |Ψ⟩ = ∫ dM e−α M2 |φ(M) |2R

 is not so important in this talk: k1 k1 ≪ 1



Simple thought : 

φ(M) ∼ Det (M − k2I)− 1
2 (k1 ≪ 1)

M ∼ ( k2

k2
0

0 (  symmetric configuration is always dominantSO(N)

Wrong !

More details exist : 

•  symmetric configuration is dominant for .SO(R) R < N

• Symmetry is stable only in a phase (unstable in the other) for .  　　
⇨ Dimension of emergent space is stable/unstable only in a/other phase. 

R < N

• Phase structure



§ A Two-Logarithm Matrix Model

⟨Ψ |e−α M̂2 |Ψ⟩ = ∫ dM e−α M2 |φ(M) |2R = ∫ dM e−S(M)

By integrating out ϕa

S(M) = Tr [ R
2

log(M − k2 + i k1) +
R
2

log(M − k2 − i k1) + α M2]
 :  real symmetric matrixM N × N

• Aligned Coulomb gas pictureThe matrix model can be analyzed by
• SD-eq.

 : Positive cosmological constant casek2 ≠ 0



§ Aligned Coulomb gas picture

dM →
N

∏
a=1

dλa

N

∏
a, b = 1
a < b

|λa − λb | for real symmetric matrix  M

 : eigenvaluesλa

SCoul(λ) = − ∑
a<b

log |λa − λb | + ∑
a

(R log |λa − k2 − ik1 | + αλ2
a)

Z = ∫ ∏
a

dλa e−SCoul(λ)



SCoul(λ) = − ∑
a<b

log |λa − λb | + ∑
a

(R log |λa − k2 − i k1 | + α λ2
a)

The system can be understood as particles of unit charges at 1-dim locations  λa

Coulomb repulsive forces among 
particles of unit charges

 charge located at fixed 
location   ( )
−R

k2 k1 ≪ 1

−R
k2

λ

V



There are four cases classified by the profile of particle density .ρ(λ)

However, the separations among (I),(II),(IV) are arbitrary, while (III) is distinct. 



(I) (II)

(III) (IV)

Examples of the eigenvalue distribution

Histogram:  
Monte Carlo of the 
Coulomb gas system 
with N = 200

Blue lines:  
Solutions of SD eq. 
in N → ∞



Phase diagram (for )k̃1 = 0.1

R = N R̃
k1,2 = N k̃1,2



 limitN → ∞

R = N R̃ k1,2 = N k̃1,2 λa = N λa

N

∑
a=1

→ N∫ dx ρ(x) ( )∫ dx ρ(x) = 1

Scont(ρ) = N2 [−
1
2 ∫ℝ2

dxdy ρ(x)ρ(y)log |x − y | + ∫ℝ
dx ρ(x)(R̃ log |x − k̃2 + ik̃1 | + αx2)]

EOM : P∫ℝ
dy

1
x − y

ρ(y) =
R̃(x − k̃2)

(x − k̃2)2 + k̃2
1

+ 2αx

(cf. Brezin et al., CMP 59 (’78) 35)



§ SD-eq.

W(z) :=
1
N ⟨Tr [ 1

z − M ]⟩ ρ(x) =
i

2π (W(x + iϵ) − W(x − iϵ))

∫ dM
∂

∂Mab {( 1
z − M )

ab
e−S(M)} = 0SD-eq.

W(z)2 − 2S̃′ (z)W(z) + R̃ ( W(k̃2 + ik̃1)
z − k̃2 − ik̃1

−
W(k̃2 − ik̃1)
z − k̃2 + ik̃1 ) + 4α = 0

N → ∞

S̃′ (M) =
R̃

2(M − k̃2 − ik̃1)
+

R̃
2(M − k̃2 + ik̃1)

+ 2αMwhere

(cf. Paniak, Weiss, JMP 36 (’95) 2512)



W(z) = S̃′ (z) − S̃′ (z)2 − R̃ ( W(k̃2 + ik̃1)
z − k̃2 − ik̃1

+
W(k̃2 − ik̃1)
z − k̃2 + ik̃1 ) + 4α

Solution

This satisfies (under appropriate choice of branches)

・  for W(z) ∼
1
z

z → ∞

・The poles of  canceledS̃′ (z)

Further,  must be chosen so that (not so easy)W(k̃2 + ik̃1)

・Branch cuts exist only on the real axis
・The number of cuts is one or two, corresponding to (I,II,IV) or (III)
・  must be positive ( )ρ(x) ρ(x) = i (W(x + iϵ) − W(x − iϵ))/2π



W(z) = S̃′ (z) −
f(z)

(z − k̃2)2 + k̃2
1

 : 6th-order real polynomials of f(z) z

Instead it is easier to assume the form below and determine ’s by the conditions.c

One-cut solution (I,II,IV) : 

W(z) = S̃′ (z) − ( c
z − k̃2 − ik̃1

+
c*

z − k̃2 + ik̃1
+ 2α) z − c+ z − c−

Two-cut solution (III) :

W(z) = S̃′ (z) −
2α(z − c) z − c1 z − c2 z − c3 z − c4

(z − k̃2)2 + k̃2
1

c1 < c2 < c < c3 < c4



The conditions can be written down as a number of algebraic equations. 

R̃/2 − c k̃2 + ik̃1 − c+ k̃2 + ik̃1 − c− = 0

etc,…

Further, for multi-cut solution, chemical potential should be equal among bunches.  

∫
c3

c2

dx (W(x) − S̃′ (x)) = 0

These conditions do not seem possible to be solved explicitly. 
But they can be solved numerically for each case of given parameters.

(Jurkiewicz, PLB 245 (’90) 178)



§  limit (  limit)k̃1 → 0 k/ N → 0

The algebraic equations become simple in the  limit, and can explicitly 
be solved. The reason is clear in the aligned Coulomb gas picture.

k̃1 → 0

The potential  becomes infinitely deep in , and the 
 charge is totally screened by  particles of unit charges (if ).

R̃ log |λ − k̃2 + ik̃1 | k̃1 → 0
−R R N ≥ R

−R
k2

λ
0

k2
λ



(I)

x

ρ(x)

a

δ

Semi-circle + δ(x − k̃2) (II)

x

ρ(x) δ (III)

x

ρ(x) δ

a

a = (1 − R̃)/α

R̃ = 1 − αk̃2
2

Phase diagram in k̃1 → 0

The profile of the eigenvalue densities in the  limitk̃1 → 0

k̃2

k̃2

k̃2

(IV) disappears



§ Symmetry Enhancement

When ,  of the eigenvalues concentrate around  to 
totally screen the  charge ( ). 

k̃1 = k1/ N → 0 R λ ∼ k̃2
−R R < N

M =

k̃2
k̃2

0

.
. .

R

0

*
*
*
*

 symmetry is enhanced 
in the limit .
SO(R)

k̃1 → 0



There are two phases (I) and (III). Consider . 
In (I), enhanced symmetry is ambiguous, because of nearby eigenvalues.           
In (III), enhanced symmetry is rather definite, since the other eigenvalues are 
separated by a potential barrier.

k̃1 ≪ 1

Cannot count well Can count well



In other words, in phase (I), an enhanced symmetry is ambiguous and sensitive 
to perturbations, while, in phase (III), it is more definite and protected by 
potential barrier from perturbations.   



§ Dimension of emergent space

Z = ∫ dM e−α M2 |φ(M) |2R

= ∫ dM e−α M2 φ(M)*Rφ(M)R−1 ∫ℝN

dϕ exp [i Mabϕaϕb − (k1 + i k2) ϕ2]

∼ ∫ℝD

dϕ exp [i ϕT (M − (k2 − ik1)I) ϕ]

 In ,  forms an -dimensional ball  of 
radial size ~  and thickness 

k̃1 → 0 ϕ R BR

1/ k1 ∼ 1/ |k2 − * |
M =

. . .

R

* ** *
0

0
k2

k2 ..



In (I), dimension of the ball is ambiguous and sensitive to perturbations. 
But definite and stable in (III). 

Ambiguous 
Sensitive to perturbations

Definite 
Stable



§ Summary and Discussions

Considered a toy version of  by simplification . ∫ dP e−αP2 |Ψ(P) |2 Pabc → Mab

Phase diagram in k̃1 → 0

Symmetry/dimension are stable because condensation of eigenvalues is separated.
 is vital, corresponding to the positive cosmological constant.k2 ≠ 0

Phase (III) is important for emergence of space



• An indirect crosscheck for the previous Monte Carlo result for the tensor model.
Tensor model :

Matrix model : A continuous phase transition at  in the limit R = N k̃1 → 0

(1 − R̃)/α

a

R̃ = R/N
1(I) (II)

 seems the critical point of a 
continuous phase transition  
λH = (N + 2)(N + 3)/2

k̃1 → 0

k̃1 → 0
k̃2 = 0

Takeuchi, NS, Eur.Phys.J.C 80 (2020) 2, 118; Obster, NS, PTEP 2020, 073B06; 
Lionni, NS, PTEP 2019 (2019) 7, 073A01.



• For a tensor, eigenvalue/vector can be defined by 

Pabcϕbϕc = λ ϕa

This agrees with the saddle point equation for the wave function.  

Finding isolated condensation of eigenvalue/vector would be the sign of 
stable emergent spacetime.

§ Future perspective

• The matrix model in this talk provides an arena for developing tools to 
analyze the canonical tensor model.

Qi, 1201.3424 [math.SP] 


