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$ Introduction

Quantum gravity 1s a fundamental problem in theoretical physics.

Study spacetime through efforts to construct models which can
oenerate spacetime-like objects.




lTensor Model — Extension of Matrix Model proposed for quantum gravity in D>2.
Ambjorn et al, NS, Gross et al 90

Usually considered in the context of Euclidean quantum gravity.
Feynman diagrams < Simplicial complexes (Colored tensor model - Gurau *09)

Suffers from the dominance of singular spaces like branched polymers

Macroscopic spaces ?

Seems difficult to regard Tensor Model as quantum gravity in D>2




How about Lorentzian version ?
Simplicial quantum gravity seems much more successful in Lorentzian context

Causal Dynamical Triangulation (CDT) — Emergence of macroscopic spacetime
Ambjorn, Jurkiewicz, Loll, PRL 93 (°04) 131301

Canonical(Causal) Tensor Model (CI'M) — A Lorentzian version of Tensor Model

Follow the structure of ADM formalism of GR. NS “12

Formulated as a first-class constrained system in Hamiltonian formalism.

%a(Q’ P) — %ab(Q’ P) — O {Qabc’ Pdef} — 5abc,def a, b, ceo = 1,2,...,N

#,, # , torm a closed Poisson algebra with variable dependent structure
coeflicients (First-class constraints).




Classical CTM has various connections to GR

 N=1 agrees with the mini-superspace approx. of GR

e« In a formal continuum limit ¢ —

RD

NS, Sato, Phys.Lett.B 732 (2014) 32-35

- Constraint algebra of C'I'M agrees wth that of ADM

NS, Sato, JHEP 10 (2015) 109

- The classical dynamics of CT'M agrees with GR in the Hamilton-Jacobi
formalism with a certain Hamilton’s principal function

Chen, NS, Sato, Phys.Rev.D 95 (2017) 6, 066008

Quantum CTM may provide a model for quantum gravity




What do we know about quantum CTM so far ?

# (0,P)|¥) = ,(0,P)|¥) =0 has an exact solution.
Gaurav, NS, Sato, JHEP 01 (2015) 010

= (PP = p(P)="

C

N
oP)i= | ] [dy exp [iPunchibit ~ ikt + i
a=1

abcP che =4 Qabb T 1 /1H P abb

1 x k? : Cosmological constant A==x10r0

Ag=(IN+2)(N+3)/2 Determined by hermiticity of %,




Emergence of Lie-group symmetries

P(P) has peaks at Lie-group invariant configurations (g*g” g’ P, = P> & € G)-
Strong peaks observed for positive cosmological constant 4 > 0. Not much for 1 < 0.
Obster, NS, PTEP 2018 (2018) 4, 043A01

)

Ridge with H = SO(2,1) : .
— Can ridges be interpreted as
Spacetime trajectory ?

But N 1s too small so far.

How are the peaks distributed ?
U U What are the dominant Lie-group syms. ?




We need more understanding ot the wave function.
A1(x)

e - k>0 n k<O
AP [dd, oxp [iPuthd. — ik D+ i M ﬁ\
e Ai(—k ¢*) \/ \/ \/ _ : W X

Negative cosmological constant case (k < 0) may be approximated by Ai(x) — exp(kx?).

p(P) = J

RN+1

With this approximation, (¥|e=*"*|¥) has been studied by Monte Carlo simulations.

Ay = (N +2)(N + 3)/2 seems a continuous phase transition point.

Takeuchi, NS, Eur.Phys.J.C 80 (2020) 2, 118; Obster, NS, PTEP 2020, 073B06;
Lionni, NS, PTEP 2019 (2019) 7, 073A01.

However, positive cosmological constant case (k > 0) is oscillatory and suffers
from sign problem, making Monte Carlo simulations very diflicult.




In this talk, we study a similar problem with much simplicity P,,. - M ,
to obtain insights for the positive cosmological constant case.

Y(M) = (M|Y¥) = pM)"

N
P(M) := J Hd¢a exp |i My — (ky + i ky) 7]
R

k, # 0 : Positive cosmological constant case (Oscillatory)

k, 1S not so important in this talk: £, <« 1

Z = (W]e-i |y = JdM e~ IM | (M) 2R
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Simple thought :

1

p(M) ~Det (M — k) > (k< 1)

&0
M ~ ( 0 ) SO(N) symmetric configuration is always dominant
k
: Wrong !

|
|
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More details exist :

 Phase structure

. SO(R) symmeltric configuration is dominant for R < N.

- Symmetry is stable only in a phase (unstable in the other) for R < N.
— Dimension of emergent space 1s stable/unstable only in a/other phase.




§ A’Two-Logarithm Matrix Model
By integrating out ¢,

(¥1e 1) = [ ant e | p(an) P = | dbg =58

R R
S(M) =Tr [5 log(M — k, + i k) + >3 logM — ky, — i1 k) + aM2]

M : N x N real symmetric matrix

k, # 0 : Positive cosmological constant case

The matrix model can be analyzed by < Aligned Coulomb gas picture
* SD-eq.

— WCif



§ Aligned Coulomb gas picture

N N
dM — I I dA, I I |A, — A,|  for real symmetric matrix M
a=1 A A, . eigenvalues

Ih J H d ,la e ~Scoul4)

Scou) == ) log|d,— 4| + ) (Rlog|d, — k, — ik, | + ai?)

a<b a




‘ The system can be understood as particles of unit charges at 1-dim locations 4,

Scoul(d) = — Zlog\/la . e Z (Rlog\/la -k, —ik | + aﬂg)
a<b T a T
Coulomb repulsive forces among —R charge located at fixed
particles of unit charges location k, (k; < 1)




There are four cases classified by the profile of particle density p(1).
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However, the separations among (I),(II),(IV) are arbitrary, while (I1I) is distinct.




Examples of the eigenvalue distribution
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N — oo limit

R=NR

SCOHl‘(p) D N2 [__{ dxdyp(x)p(y)log ‘)C e )7‘ B J
R2

k1,2 = \ﬁw}l,z

N
Z — NJ'dxp(x)
g=i

R(x - k)

(X — 722)2 e ];%

ﬂd = \ﬁv;{a

<[dxp<x> =y

R

20X

dxp(x)(fé log [ x — 122 + ilzl | + axz)]

(cf. Brezin et al., CMP 59 (’78) 35)
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Z_kz_ilzl Z_];2+l'];1

~J

s s o - s
- - Wk, + 1k Wk, — ik
W(z)2—25'(z)W(z)+R< (3 L R 1))+40¢=0

~ R R
where S'(M) = : ~

A 7 = + 2aM

(cf. Paniak, Weiss, JMP 36 ('95) 2512)




Solution

; 2 o Wik, + ik W(k, — ik
B o e M) W g
\ Z—kz—ikl Z_k2+ik1

This satisfies (under appropriate choice ot branches)

|
* W(z) ~—for z - oo
%

- The poles of §'(z) canceled

Further, W(k, + ik,) must be chosen so that (not so easy)

» Branch cuts exist only on the real axis
- The number of cuts is one or two, corresponding to (I,1I,IV) or (I1I)
» p(x) must be positive (p(x) =i (W(x + ie) — W(x — ie))/27z)

(
e
= s
PR TR




|

V()

(Z =% ]’22)2 i I;%

W(z) = S'(z) —

One-cut solution (LII,1V) :

f(z) : bth-order real polynomials of z

W(z) = S'(z) — (

Two-cut solution (I1I) :

C | G
25 = | = =
Z—kz—lkl Z_k2+ik1

W(z) = S'(z) —

Instead 1t 1s easier to assume the form below and determine ¢’s by the conditions.

20(7 — c)\/z — cl\/z — (32\/z — 63\/2 =y

(
TL(L —— —_————  —
-

(z — ky)? + k2

Ci 56 <CEo ek
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The conditions can be written down as a number of algebraic equations.

RI2 = cyJhy + ik, — e[l ik = =0

etC,...

Further, for multi-cut solution, chemical potential should be equal among bunches.
(Jurkiewicz, PLB 245 (°90) 178)

J dx (Wx) = S'(x)) =0

2

These conditions do not seem possible to be solved explicitly.
But they can be solved numerically for each case of given parameters.

I(
E!:I:!;/ RS P e NG T o e M T ] T Al - S i, e s P T 11~ W G A L oy R TRl s SNV L Sy T P L AN i e T S T N2 i Bl S . B S e R S A e N S S
S




O -
| =
\ |

§ k; = 0 limit (k/+/N — 0 limit)

The algebraic equations become simple in the £, — 0 limit, and can explicitly
be solved. The reason is clear in the aligned Coulomb gas picture.

The potential Rlog|A — k,

ik, | becomes infinitely deep in &k, — 0, and the

—R charge is totally screened by R particles of unit charges (if N > R).




The profile of the eigenvalue densities in the k; — 0 limit

(I) Semi-circle + &(x — k,) I 0 5 D) H) S
p(x) O
BT WA WL X
e X .
ky i Phase diagram in &, — 0
~ : ()
. =\/(1 ~ R)la

(IV) disappears




§ Symmetry Enhancement

When k, = k,/4/N = 0, R of the eigenvalues concentrate around A ~ k, to
totally screen the —R charge (R < N).

. 0 SO(R) symmetry is enhanced
M = ' in the limit &, — 0.




There are two phases (I) and (III). Consider &, < 1.
In (I), enhanced symmetry is ambiguous, because of nearby eigenvalues.

In (III), enhanced symmetry is rather definite, since the other eigenvalues are
separated by a potential barrier.

Cannot count well Can count well

/ e

oy | () |

1




In other words, in phase (I), an enhanced symmetry is ambiguous and sensitive
to perturbations, while, in phase (IIl), it is more definite and protected by
potential barrier from perturbations.

E E

(I) (IIT)




§ Dimension of emergent space

e J dM =M | (M) |*F
2 J M &M qg(M)*Rqo(M)R‘lf dp exp [i Moty — (ky + k) 7]
RN

~ J dp exp [i¢T(M = (ky — ik))I) 4)]
RD

[n k, —» 0, ¢ forms an R-dimensional ball BX of

* radial size ~ 1/4/k; and thickness ~ 1/4/k, —*|




In (I), dimension of the ball 1s ambiguous and sensitive to perturbations.
But definite and stable in (I1I).

E E

(0 (111)

Ambiguous Definite
Sensitive to perturbations Stable




§ Summary and Discussions

Considered a toy version of JdP e~""|W(P)|* by simplification P, — M.,

~

R Phase diagram in k, — 0 0 . il \ |
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Phase (I11I) 1s important for emergence of space
Symmetry/dimension are stable because condensation of eigenvalues 1s separated.

k, # 0 18 vital, corresponding to the positive cosmological constant.




» An indirect crosscheck for the previous Monte Carlo result for the tensor model.

Tensor model : 1, = (N + 2)(N + 3)/2 seems the critical point of a
continuous phase transition

Takeuchi, NS, Eur.Phys.J.C 80 (2020) 2, 118; Obster, NS, PTEP 2020, 073B06;

Lionni, NS, PTEP 2019 (2019) 7, 073A01.

Matrix model : A continuous phase transition at R = N in the limit £, — 0

R ki — 0
‘ (1)
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§ Future perspective

» For a tensor, eigenvalue/vector can be defined by

P abc¢b¢c = 4 ¢a

This agrees with the saddle point equation for the wave function.

Finding 1solated condensation ot eigenvalue/vector would be the sign of

stable emergent spacetime.

» The matrix model in this talk provides an arena for developing tools to

analyze the canonical tensor model.

Qi, 1201.3424 [math.SP]




