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We discuss the relation between entanglement entropy and the
entropy in spaces that contain horizons.
The divergent part of the entanglement entropy scales with the
area of the entangling surface (Bombelli, Koul, Lee, Sorkin 1986,
Srednicki 1993) .
This feature suggests a connection with the entropy of the
gravitational background when the entangling surface is
identified with the horizon.
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In the framework of the AdS/CFT correspondence, we consider
parametrizations for which the boundary metric takes the
Rindler and static de Sitter form.
We study the entanglement entropy for a CFT confined within a
part of the AdS boundary delimited by an entangling surface A.
The entropy is proportional to the area of a minimal surface that
starts from A and extends into the bulk (Ryu, Takayanagi 2006 ).
We compute the entropy by indentifying the entangling surface A
with the horizon of the boundary metric.

N. Tetradis University of Athens
dS Entropy as Holographic Entanglement Entropy



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Framework Rindler entropy de Sitter entropy Generalizations Corrections to entropy Conclusions
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Rindler slicing of (d + 2)-dimensional AdS space

Global coordinates:

ds2
d+2 =

R2

cos2 χ

[
−dτ2 + dχ2 + sin2 χ

(
dθ2 + sin2 θ dΩ2

d−1
)]

,

d > 1: −∞ < τ < ∞, 0 ≤ χ < π/2, −π/2 ≤ θ ≤ π/2.
d = 1: θ covers the full unit circle: −3π/2 ≤ θ ≤ π/2.
Fefferman-Graham coordinates with a Rindler boundary:

ds2
d+2 =

R2

z2
[
dz2 − a2y2dη2 + dy2 + dx⃗d−1

]
,

with −∞ < η < ∞.
0 < y < ∞ covers the right (R) Rindler wedge
−∞ < y < 0 covers the left (L) wedge.
All the coordinates in the above expressions are dimensionless,
with R the only dimensionful parameter.
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Relation between the Euclidean Rindler and global coordinates
for d = 1:

χ(z, ηE, y) = tan−1

(
1
z

√
y2 cos2(a ηE) +

1
4 (y2 + z2 − 1)2

)

τE(z, ηE, y) = tanh−1
(

2y sin(a ηE)

y2 + z2 + 1

)
θ(z, ηE, y) = tan−1

(
y2 + z2 − 1
2y cos(a ηE)

)
.

N. Tetradis University of Athens
dS Entropy as Holographic Entanglement Entropy



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Framework Rindler entropy de Sitter entropy Generalizations Corrections to entropy Conclusions

Figure: The slicing of the Euclidean AdS3 cylinder for a Rindler boundary
with a = 1.
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For η = 0 (or Minkowski time t = 0), the coordinate y = x > 0
covers the positive x-axis of Minkowski space, and y = x < 0 the
negative x-axis.
The two regions are separated by the horizon at y = 0.
There is entanglement between the states localized in the right
wedge (y > 0) and the states in the left wedge (y < 0).
Calculate the entanglement entropy through holography.
Consider a strip with width ℓ along the y-axis and infinite length
along the perpendicular directions. The minimal surface extends
into the bulk up to a turning point at

z∗ =
Γ (1/2d)

2
√
π Γ (d + 1/2d) ℓ.
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The holographic entanglement entropy is obtained by dividing
the area of the minimal surface by 4Gd+2:

SA =
2R(Rd−1Ld−1)

4Gd+2

(
1

(d − 1)ϵd−1 +

√
π

2d
Γ
( 1−d

2d
)

Γ
( 1

2d
) 1

zd−1
∗

)
.

ϵ is a cutoff imposed on z near the boundary.
L is the large length of the directions perpendicular to the strip,
and Rd−1Ld−1 the corresponding volume.
For d = 1, one must substitute 1/((d − 1)ϵd−1) with log(1/ϵ).
The term in the parenthesis becomes log(ℓ/ϵ).
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Take the limit in which the strip covers the whole positive axis.
The entropy arises from the entanglement of the right wedge with
the left wedge of Rindler space.
As z∗ → ∞, only the first term survives. This term is strongly
dependent on the cutoff and independent of the strip width ℓ.
Define the effective Newton’s constant as (Hawking, Maldacena,
Strominger 2001)

Gd+1 = (d − 1)ϵd−1 Gd+2
R ,

with (d − 1)ϵd−1 replaced by 1/log(1/ϵ) for d = 1.
A natural definition within an effective theory with a cutoff, such
as the RS model (Randall, Sundrum 1999), after correcting for a
factor of 2 from the two copies of AdS space.
Alternatively, consider the regulated theory in holographic
renormalization (de Haro, Solodukhin, Skenderis 2001).
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The strip extends from the horizon at y = 0 to a value ym for
which the limit ym → ∞ is taken.
For any finite value of ym the strip is entangled not only with the
left wedge, but also with the (infinite domain) beyond ym.
As the space is essentially flat, the two contributions to the
entropy are expected to be equal.
If one is interested in the entanglement with the left wedge only,
the limit ym → ∞ must be accompagnied by a division by 2 of
the computed entanglement entropy.
There is only one horizon on the boundary.
The final result for the Rindler entropy is

SR =
Rd−1Ld−1

4Gd+1
,

in agreement with Laflamme 1987.
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dS slicing of (d + 2)-dimensional AdS space

Fefferman-Graham coordinates with a static dS boundary:

ds2
d+2 =

R2

z2

[
dz2 +

(
1 − 1

4H2z2
)2

×

(
−(1 − H2ρ2)dt2 +

dρ2

1 − H2ρ2 + ρ2 dΩ2
d−1

)]
.

d > 1: 0 ≤ ρ ≤ 1/H covers the static patch. There are two such
patches, with ρ = 0 for the “North” and “South pole”.
d = 1: each static patch is covered by −1/H ≤ ρ ≤ 1/H.
All the coordinates are dimensionless, with R the only
dimensionful parameter. The physical Hubble scale is H/R.
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Relation between the Euclidean de Sitter and global coordinates
for d = 1:

χ(z, tE, ρ) = tan−1

(
1 − 1

4 H2z2

Hz

√
cos2(HtE) + H2ρ2 sin2(HtE)

)

τE(z, tE, ρ) = tanh−1

(
1 − 1

4 H2z2

1 + 1
4 H2z2 sin(HtE)

√
1 − H2ρ2

)

θ(z, tE, ρ) = tan−1

(
Hρ√

1 − H2ρ2 cos(HtE)

)
.
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Figure: The slicing of the Euclidean AdS3 cylinder for a static de Sitter
boundary with H = 1.
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For the entanglement entropy, we consider the interior of a
spherical entangling surface on the boundary. (For d = 1 we
consider a line segment between the two horizons at ρ = ±1/H.)
The minimal surface in the bulk can be determined through the
minimization of the area

A = RdSd−1
∫

dρ ρd−1
(
1 − 1

4 H2z2)d−1

zd

√(
1 − 1

4 H2z2
)2

1 − H2ρ2 +

(
dz(ρ)

dρ

)2
,

with Sd−1 the volume of the (d − 1)-dimensional unit sphere.
Through the definitions σ = sin−1(Hρ), w = 2 tanh−1(Hz/2), the
above expression becomes

A = RdSd−1
∫

dσ sin
d−1(σ)

sinhd(w)

√
1 +

(
dw(σ)

dσ

)2
.
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Minimization of the area results in the differential equation

tan(σ) tanh(w)w′′+(d−1) tanh(w)
(
(w′)

3
+ w′

)
+d tan(σ)

(
(w′)

2
+ 1
)
= 0.

The solution is

w(σ) = 2 tanh−1

(√
2 + cos(2σ)− 4 cos(σ) cos(σ0) + cos(2σ0)

cos(2σ)− cos(2σ0)

)

For H → 0 and small σ, w we recover the known equation for the
minimal surface in the case of a Minkowski boundary. Its
solution is z(ρ) =

√
ρ2

0 − ρ2, with ρ0 the radius of the entangling
surface on the boundary.
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Figure: Minimal surfaces for a de Sitter boundary with H = 1.
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The area of the minimal surface is dominated by the region near
the boundary. Cutting off at z = ϵ, the leading contribution is

Area(γA) = RdSd−1
∫

Hϵ

dw
wd =

RdSd−1

(d − 1)Hd−1ϵd−1 .

The entropy becomes

SdS =
RdSd−1

4Gd+2(d − 1)Hd−1ϵd−1 =
Sd−1

4Gd+1

(
R
H

)d−1
,

which reproduces the entropy of Gibbons, Hawking 1977.
The above expressions are valid for d = 1 as well, with
1/((d − 1)ϵd−1) replaced by log(1/ϵ).
No division by 2 is necessary. For d = 1 there are two horizons on
the boundary.

N. Tetradis University of Athens
dS Entropy as Holographic Entanglement Entropy



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Framework Rindler entropy de Sitter entropy Generalizations Corrections to entropy Conclusions

Is the identification with the entanglement entropy also valid for
more general bulk gravitational theories?
Consdider Gauss-Bonnet bulk gravity, which is dual to a CFT
with a more general class of central charges. (Buchel, Escobedo,
Myers, Paulos, Sinha, Smolkin 2010).
The theory admits an AdS bulk solution of the form

ds2
d+2 =

R2

z2

[
dz2

f − dt2 + dx⃗d

]
,

where f = (1 +
√

1 − 4λ)/(2λ), with λ the GB coupling.
The AdS radius is equal to R̃ = R/

√
f.

The effective Newton’s constant is (Myers, Pourhasan, Smolkin
2013)

G̃d+1 = (d − 1)ϵd−1 Gd+2

(1 + 2λf)R̃
.
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The holographic calculation of the entanglement entropy requires
a modified bulk functional (Hung, Myers, Smolkin 2011, Camps
2014), which generalizes the Wald entropy (Wald 1993).
For an entangling surface with a strip geometry on a flat
boundary, the leading contribution is (Myers, Singh 2012)

S̃A =
(1 + 2λf)R̃dLd−1

2(d − 1)ϵd−1Gd+2
,

The entropy for a Rindler boundary is

S̃R =
R̃d−1Ld−1

4G̃d+1
.
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The divergences of the total area of the minimal surface are
included in the integral

A = RdSd−1I(ϵ) = RdSd−1
∫

Hϵ

dw
sinhd(w)

.

For d = 3 we have

I(ϵ) = 1
2H2ϵ2 +

1
2 log(Hϵ) +O(ϵ2).

The dS entropy in four dimensions is proportional to the area of
the horizon, with a coefficient that contains a logarithmic
correction:

SdS =
A

4G4

(
1 + H2ϵ2 logHϵ

)
.
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What is the origin of the correction? It must be attributed to
higher-curvature terms in the effective gravitational action.
Use known results from holographic renormalization (de Haro,
Solodukhin, Skenderis 2001). The bulk metric of a
five-dimensional asymptotically AdS space is written as

ds2 =
R2

z2
(
dz2 + gij(x, z)dxidxj)

g(x, z) = g(0) + z2g(2) + z4g(4) + h(4)z4 log z2 +O(z5).

A solution is then obtained order by order.
The on-shell gravitational action is regulated by restricting the
bulk integral to the region z > ϵ.
The divergent terms are subtracted through the introduction of
appropriate counterterms. An effective action is obtained in
terms of the induced metric γij on the surface at z = ϵ.
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The holographic entanglement entropy displays similar
divergences for ϵ → 0.
In our approach the entropy is not renormalized, but we
incorporate the ϵ-dependence in the effective couplings.
We employ the regulated form of the effective action before the
subtraction of divergences.
The induced metric γij includes a factor ϵ−2 relative to gij. We
redefine γij by extracting this factor: γij → ϵ2γij. In this way γ,
g(0), g(2) etc are all of the same order.
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The regulated action is

S =
1

16πG5

∫
d4x

√
−γ

[
− 6

Rϵ4 +
R

2ϵ2R− R3

4 log ϵ

(
RijRij − 1

3R
2
)]

.

The first term is a cosmological constant, which must be
(partially) cancelled by vacuum energy on the surface z = ϵ.
The second term is the Einstein term if the effective Newton’s
constant G4 is defined as before.
The third term is responsible for the holographic conformal
anomaly.
The structure of the effective action is the same for the RS
model, up to a rescaling of z (Myers, Pourhasan, Smolkin 2013).
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The effective action supports a dS solution. The entropy must
take into account the presence of the third term.
The Wald entropy gives the horizon entropy in theories with
higher curvature interactions (Wald 1993):

SWald =
A

4G4
− R3

32G5
log ϵ

∫
A

d2y
√

h
(

2Rijγ⊥
ij − 4

3R
)
.

The integration is over the horizon, with induced metric h, and
γ⊥ the metric in the transverse space.
For a dS background we obtain

SWald =
A

4G4

(
1 + H2ϵ2 log ϵ

)
.

The correction to the dS entropy agrees with the singular part of
the correction provided by the holographic calculation.
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For the N = 4 supersymmetric SU(N) gauge theory, the
divergent part of the effective action is

S = − β

16π2 Γ

(
2 − d + 1

2

)∫
d4x

√
−γ

(
RijRij − 1

3R
2
)
,

with β = −(nS + 11nF + 62nV)/360 = −N2/4.
The divergence of Γ(2 − (d + 1)/2) in dimensional regularization
corresponds to a log(1/ϵ2) divergence in the cutoff regularization.
This gives the standard relation G5 = πR3/(2N2) between the
bulk Newton’s constant and the central charge of the dual CFT.
The dimensionful UV momentum cutoff for d = 3 becomes (Dvali
2008)

(ϵR)−2 = 2G5/(R3G4) = 8π2m2
Pl/N2.

Finally,

SdS =
AH
4G4

+ N2 log(Hϵ) =
AH
4G4

+ N2 log

(
N√
8π

H/R
mPl

)
, (1)

where H/R is the physical Hubble scale. This expression is
completely analogous to the black-hole result (Sen 2013).
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Within a construction that implements a physical UV cutoff,
such as the RS model (Randall, Sundrum 1999), the effective
Newton’s constant in the Einstein action arises through the
integration of the bulk degrees of freedom.
In the general context of the AdS/CFT correspondence the bulk
degrees of freedom correspond to matter fields of the dual theory.
The picture is consistent with the expectation that the entropy
associated with gravitational horizons can be understood as
entanglement entropy if Newton’s constant is induced by
quantum fluctuations of matter fields (Jacobson 1994).
However, the validity could be more general. In a theory with N2

species there is a UV cutoff Λ2 ∼ N2/G4 (Dvali 2008). Keeping Λ
fixed, one concludes that G4 ∼ N2.
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