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Why three dimensions?

Studying gravity in three dimensions
I One often learn something from unphysical models, e.g.

toy models.

I Many problems simplify tremendously in three dimensions,
yet the geometry is still rich enough to provide interesting
results. Techniques may then be applied to 4D.

I Particularly quantum gravity simplifies drastically in 3D
which makes it more interesting to study.

I 3D gravity provides nice laboratory to study the
AdS/CFT correspondence.
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Scalar-Tensor theories in general

Why bother?
I We know that General Relativity does not solve

everything, neither is it quantizable. In fact, while being a
beautiful theory, there are still plenty of open questions.

I In physics it is common to modify theories, using the
correspondence principle, to explain new phenomena.
Hence it is reasonable to study modified theories of
gravity.

I Scalar tensor theories constitute one of the simplest
extensions/modifications of General Relativity.
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Lovelock, Horndeski and DHOST

A brief history
I In 1971 David Lovelock showed that (under certain

assumptions like vanishing torsion, etc) the most general
action constructed from the metric yielding at most
second order field equations in D ≤ 4 is the
Einstein-Hilbert action.

I His student, Gregory Horndeski, then determined in 1974
the most general such action constructed from the metric
tensor and a scalar field.

I
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Lovelock, Horndeski and DHOST

A brief history
I In 1971 David Lovelock showed that (under certain

assumptions like vanishing torsion, etc) the most general
action constructed from the metric yielding at most
second order field equations in D ≤ 4 is the
Einstein-Hilbert action.

I His student, Gregory Horndeski, then determined in 1974
the most general such action constructed from the metric
tensor and a scalar field.

I The requirement of having at most second order field
equations is to avoid so-called Ostrogradsky instabilities
(ghosts), which are extra degrees of freedom with
negative energy.
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Lovelock, Horndeski and DHOST

A brief history
I In 1971 David Lovelock showed that (under certain

assumptions like vanishing torsion, etc) the most general
action constructed from the metric yielding at most
second order field equations in D ≤ 4 is the
Einstein-Hilbert action.

I His student, Gregory Horndeski, then determined in 1974
the most general such action constructed from the metric
tensor and a scalar field.

I In 2015 David Langlois and Karim Noui introduced the
so-called Degenerate Higher-Order Scalar-Tensor theories,
which are of higher order yet still avoid the Ostrogradsky
ghosts.
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The model

Action

S =

∫
d3x
√
−gL

=

∫
d3x
√
−g
[
Z (X ) + G (X )R

+A2(X )
(
(�φ)2 − φµνφµν

)
+ A3(X )�φφµφµνφ

ν

+A4(X )φµφµνφ
νρφρ + A5(X ) (φµφµνφ

ν)2
]

φµ = ∇µφ

φµν = ∇µ∇νφ

X = φµ φ
µ
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Symmetries of the action

Scalar field transformations
I Shift symmetry: φ→ φ + const.→ Noether current

I Discrete symmetry: φ→ −φ
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Symmetries of the action

Disformal transformation

gµν → g̃µν + K (X )φµφν

Transforms one DHOST theory into another by mixing the
coupling functions in the action, e.g.:

Z (X )→ Z (X̃ )(1 + KX )−1/2, G (X )→ G (X̃ )(1 + KX )−1/2,

A2(X )→ A2(X̃ )(1 + KX )3/2 + G (X̃ )K (1 + KX )1/2.

Possibly can be used to encounter solutions of one theory by
transforming those of another (work in progress).
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Symmetries of the action

Kerr-Schild transformation

gµν → g̃µν = g (0)
µν − a(x)lµlν ,

with lµ being a null and geodesic vector field w.r.t. both
metrics.
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Symmetries of the action

Kerr-Schild transformation

f (r)→ f (r)− a(r), H(r)→ H(r), k(r)→ k(r)

Ansatz

ds2 = −f (r)dt2 +
dr 2

f (r)
+ H2(r) [dθ − k(r)dt]2 ,

φ = φ(r).
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Symmetries of the action

Kerr-Schild transformation

f (r)→ f (r)− a(r), H(r)→ H(r), k(r)→ k(r)

Invariance of the action
I Action is left invariant under a Kerr-Schild transformation

given that the function a(r) satisfies a first order
differential equation.

I In particular, if X is constant, the solution to this
equation is a(r) = M , where M is a constant (mass term
of the metric in 3D).
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The road towards a solution

Ansatz

ds2 = −f (r)dt2 +
dr 2

f (r)
+ H2(r) [dθ − k(r)dt]2 ,

φ = φ(r).
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The road towards a solution

Ansatz

ds2 = −f (r)dt2 +
dr 2

f (r)
+ H2(r) [dθ − k(r)dt]2 ,

φ = φ(r).

Additional condition

Z2
2 − 2Z1Z3 = 0

Z1 = G + XA2,

Z2 = 2A2 + XA3 + 4GX ,

Z3 = A3 + A4 + XA5.
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The road towards a solution

General strategy
I Insert ansatz into covariant equations of motion

I Equivalently one can vary the one dimensional Lagrangian
with respect to f , k and φ

I Instead of using the e.o.m for φ, use Noether current
J r = const.

I Regularity implies JµJ
µ = (const.)2/f (r)⇒ J r = 0
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The road towards a solution

Equations of motion

(
Z1H

3k ′
)′

= 0

f ′ = −4fH ′Z1Z2X
′ + fHZ2

2X
′2 + 4H3k ′2Z2

1 − 8HZZ1

8H ′Z2
1 + 2HZ1Z2X ′

kZ2

(
Z1H

3k ′
)′

+ 4H [(Z1Z )X − ZZ2] = 0

Note that we impose Z 6= 0 in order to avoid degenerate
equation.
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3k ′
)′
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8H ′Z2
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+ 4H [(Z1Z )X − ZZ2] = 0

H ′′ = 0

Olaf Baake Scalar tensor model Scalar tensor BHs in 3d



The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Note that the solution is completely determined by the
previously defined combinations Z1 and Z2, hence different
functions in the action can lead to the same solution with
effective cosmological constant Λeff = −Z/2Z1.
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The road towards a solution

Solution/s
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.
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Disformal transformation

g̃µν = gµν − K

1 + KX
φµφν , X̃ =

X

1 + KX
,

Z1 → Z1(1 + KX )
1
2 , Z → Z

(1 + KX )
1
2
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Other properties
I Equations remain solved by this metric without imposing

the condition Z2
2 − 2Z1Z3 = 0.

I The ansatz φ = qt + ψ(r) + Lθ admits the same metric
as a solution.
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Euclidean method

First steps
I Obtain Euclidean continuation of the action through:

t = −iτ .

I To keep metric real introduce JEucl = −iJ (J physical
angular momentum).

I Avoid conical singularity by imposing periodic euclidean
time with period β = 1/T , where T is the temperature:
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Euclidean method

First steps
I Obtain Euclidean continuation of the action through:

t = −iτ .

I To keep metric real introduce JEucl = −iJ (J physical
angular momentum).

I Avoid conical singularity by imposing periodic euclidean
time with period β = 1/T , where T is the temperature:

T =
F ′(r)

4π

∣∣∣
r=rh

=
1

4π

(
2rh
L2
− J2

2r 3
h

)

L2 =
2Z1(X )

Z (X )
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Euclidean method

General procedure
I Compute the euclidean action (up to a boundary term),

which is of the form

IE = (lots of terms) + BE .

I Fix boundary term by demanding that the action has an
extremum, δIE = 0.

I Compute boundary term at infinity and at the horizon
and read off the thermodynamic quantities from the
Gibbs free energy.
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Results

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J , Ω = − J

2r 2
h

.

Gibbs free energy

IE = βF = βM−S − βΩJ
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Results

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J , Ω = − J

2r 2
h

.

First law of thermodynamics holds: dM = TdS + ΩdJ !
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Results

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J , Ω = − J

2r 2
h

.

Recall: L2 = 2Z1(X )/Z (X ), so imposing Z1 > 0 and Z > 0
ensures positive mass and entropy solutions.
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Results

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J , Ω = − J

2r 2
h

.

Note that the same results can be obtained through a
generalized Cardy formula given that the theory admits a
regular scalar soliton. The soliton is identified with the ground
state of the theory and its mass is Msol = −2πZ1.
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Phase transition

Gibbs free energy (static case)

∆FBTZ = FBTZ −F = 16π3T 2

[
Z2

1 (X )

Z(X )
− Z

2
1 (0)

Z(0)

]

∆FSol = FSol −F = 16π3T 2Z2
1 (X )

Z(X )
− 2πZ1(X )

For the soliton there is a Hawking-Page phase transition at

Tc =

√
2

4π

√
Z(X )

Z1(X )
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Phase transition
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Summary and future work

Summary
I We have shown that under general circumstances (with

only one condition on the coupling functions of the
theory) there is a unique BTZ-like solution.

I The solution does only depend on a combination of the
coupling functions, hence different functions can lead to
the same solution.

I The thermodynamic properties of the solution correspond
exactly to what one would expect from a BTZ-like metric.
Further it is consistent with the generalized Cardy formula
in CFT.

I As in the BTZ case there is a phase transition between
the black hole and the soliton.
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Summary and future work

Future work
I Are there more solutions if the condition on the functions

is removed? Can we generate solutions between different
DHOST theories using sophisticated transformations?

I Study more thoroughly the disformal transformations.

I What is so special about the condition we imposed on the
coupling functions?
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That’s all folks!

Thank you very much for your attention!
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