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The triangle relation

Proposed by A. Strominger and collaborators [Strominger 2017]
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Soft theorems

For theories with long-range interactions mediated by a massless spin-s
boson (s =1, 2), when emitting one of these bosons with very low
frequency, the tree-level scattering amplitude develops a pole whose
residue is given by the universal formula:

Mn+1

(
p1, . . . , pn,

{
q; ε±s

} )
= S (0)(ε±s , pk , q)Mn(p1, . . . , pn) +O

(
ω0
)
,

(1)
where ω = q0 and ε±s are respectively the energy and polarization tensor
of the soft boson, and

S (0) =
n∑

k=1

gk
(pk · ε±)

s

pk · q
(2)

is called a soft factor, with gk being the cubic couplings controlling the
emission of the soft particle from the external legs. For the case of s = 2,
equation (1) has come to be known as Weinberg’s soft graviton theorem.
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Asymptotic symmetries as approximate symmetry

Poincaré symmetry
Lξ ηµν = 0, (3)

where ξ is a spacetime vector that generates the infinitesimal
transformation.

Asymptotically flat spacetime

gµν = ηµν +O(
1

r
). (4)

Asymptotic symmetry

Lξ gµν = O(
1

r
). (5)
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Asymptotic symmetries in general relativity

A suitable coordinate system {u, r , θ, φ} with the line element ansatz

ds2 =
Ve2β

r
du2 − 2e2βdudr + r2hAB(dxA − UAdu)(dxB − UBdu), (6)

where

2hABdxAdxB = (e2γ + e2δ)dθ2 + 4 sin θ sinh(γ − δ)dθdφ

+ sin2 θ(e−2γ + e−2δ)dφ2.

Boundary conditions:

For some choice of u, one can go to the limit r →∞ along each ray.

For some choice of θ and φ and the above choice of u, lim
r→∞

V
r = −1,

lim
r→∞

rUA = lim
r→∞

β = lim
r→∞

γ = lim
r→∞

δ = 0.

Over the coordinate ranges
u0 ≤ u ≤ u1, r0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2φ, all metric
components can be expanded in the powers of 1

r at r =∞.

[Bondi, van der Burg, Metzner 1962] [Sachs 1962]
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The infinitesimal diffeomorphisms preserving those boundary
conditions are of the form

ξu = T (z , z̄) +
1

2
uDAY

A,

ξr = −1

2
r DAY

A +O(1),

ξz = Y (z) +O(
1

r
),

ξz̄ = Ȳ (z̄) +O(
1

r
),

(7)

where z = e iφ cot θ2 is the standard stereographic coordinates.

The transformations

ξu = T (z , z̄), ξr = O(1), , ξz = O(
1

r
), ξz̄ = O(

1

r
). (8)

form the “supertranslation” subgroup. This terminology comes from
the fact that the translations in Minkowski space are elements of this
subgroup.
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Asymptotic symmetries of gauge theory

In the retarded spherical coordinates

ds2 = −du2 − 2du dr + 2r2γzz̄dzdz̄ , γzz̄ =
2

(1 + zz̄)2
, (9)

the relevant fields will be expanded in the powers of 1
r at r =∞ and

the theory will be solved order by order respect to certain gauge and
boundary conditions.

For Maxwell theory, a convenient choice is

Ar = 0 , Au = O(r−1) , Az = O(1) , (10)

Asymptotic symmetries of Maxwell theory is the residual (large) U(1)
gauge symmetry preserving those conditions

δεAr = 0 , δεAu = O(r−1) , δεAz = O(1) , (11)

which leads to ε = ε(z , z̄).

[He, Mitra, Porfyriadis, Strominger 2014]
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Asymptotic conserved charges

The associated asymptotic conserved charge of Maxwell theory is

Qεout =

∫
r→∞

dzdz̄ γzz̄ ε(z , z̄) r2 Fru (12)

The associated asymptotic conserved charge of linearized gravity
theory is

Qξout =

∫
r→∞

dzdz̄ γzz̄ r
2

[
ξσ∇rhuσ + ξr∇uh − ξr∇σhuσ

− hrσ∇σξu +
1

2
h∇rξu

]
. (13)

[Barnich, Brandt 2001]
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Gravitational memory

In general relativity, it is important to focus upon coordinate invariant
observables. Consider two spatial freely falling particles, located at z = 0,
and separated on the x-axis by a coordinate distance Lc . The proper
distance L between the two particles in the presence of the GW in TT
gauge that propagates down the z-axis, hTTab (t, z), is given by

L =

∫ Lc

0
dx
√
gxx =

∫ Lc

0
dx
√

1 + hTTxx (t, z = 0)

'
∫ Lc

0
dx

(
1 +

1

2
hTTxx

)
= Lc +

1

2
hTTxx Lc (14)

[Flanagan, Hughes 2005]

Pujian Mao (TJU) 03 Aug. 2020, @HANOI 10 / 41



This proper distance can be generalized to any direction

Li (t) = Lic +
1

2
hTTij (t)Ljc . (15)

The permanent change

∆Li =
1

2
∆hTTij Ljc =

1

2
hTTij (t = +∞)Ljc −

1

2
hTTij (t = −∞)Ljc (16)

in the detector after the gravitational wave has passed is called the
gravitational wave memory.
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Braginsky and Thorne analyzed the possible detection of the
gravitational wave memory produced by the collision and scattering of
large massive objects such as stars or black holes and found that such
collisions resulted in a net difference in the transverse traceless part of
the linearized metric in the momentum-space at large distance given
by

∆hTTµν (~k) =
1

r0

√
G

2π

( n∑
a=1

p′aµp
′
aν

k · p′a
−

m∑
c=1

pcµpcν
k · pc

)TT

, (17)

Here we have n(m) incoming (outgoing) objects with asymptotic
momenta p′aµ(pcµ). k = (1, ~k) is the null vector pointing from the
collision region to detector.
[Braginsky, Thorne 1987]

Pujian Mao (TJU) 03 Aug. 2020, @HANOI 12 / 41



Gravitational memory and Soft theorem

Weinberg’s soft graviton theorem [S. Weinberg (1965)] is a universal
relation between (n→ m + 1)- particle with one final soft graviton and
(n→ m)-particle quantum field theory scattering amplitudes. The
universal result is given by

lim
ω→0

Mn+m+1

(
p′1, ...p

′
n; p1, ...pm, (ωk , ε

µν)
)

=
√

8πGSµνε
µνMn+m(p′1, ...p

′
n; p1, ...pm) + O(ω0), (18)

where

Sµν =
1

ω

(
m∑

a=1

paµpaν
k · pa

−
n∑

c=1

p′cµp
′
cν

k · p′c

)TT

. (19)

In this expression ωk = (ω, ω~k) with ~k2 = 1 is the four-momentum and
εµν is the transverse-traceless polarization tensor of the graviton. The
superscript TT denotes the transverse-traceless projection.
[Strominger, Zhiboedov 2014]
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Soft theorem as Ward identity of broken symmetry

In S-matrix language, a symmetry is just a relation between matrix
elements 〈out′|in′〉 = 〈out|in〉, where the in and out states have been
transformed as |in′/out′〉 = Uin/out|in/out〉.
The operators implementing the symmetry must verify Uout†U in = 1.

If this symmetry is generated by a charge Q (i.e.

U in/out = e iθQ
in/out

), the associated Ward identity reads as

〈out|Qout −Qin|in〉 = 0 . (20)
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The charge for a spontaneously broken symmetry must act
non-linearly on the states,otherwise it would annihilate the vacuum.

The charge can be decomposed into linear and non-linear pieces
Q = QL + QNL.

The Ward identity for a broken charge becomes

〈out|Qout
NL −Qin

NL|in〉 = −〈out|Qout
L −Qin

L |in〉 . (21)

Neglecting issues about a proper, non-divergent definition of a broken
charge, if QNL creates zero-energy Goldstone bosons, equation (21)
looks very much like (1).

[Strominger 2013]
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Soft photon theorem and large gauge transformation

Strominger and collaborators have shown precisely that the residual (large)
U(1) gauge symmetry preserving the following condition

Ar = 0 , Au = O(r−1) , Az = O(1), (22)

in the retarded spherical coordinates

ds2 = −du2 − 2du dr + 2r2γzz̄dzdz̄ , γzz̄ =
2

(1 + zz̄)2
, (23)

with the associated charge

Qεout =

∫
=+
−

dzdz̄ γzz̄ ε(z , z̄) r2 Fru (24)

is the symmetry responsible for the soft photon theorem.
[He, Mitra, Porfyriadis, Strominger 2014]
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The solution space for Maxwell theory

In the bulk we have a gauge field Aµ and matter. We will avoid talking
about the kind of matter we have (e.g. scalar, fermionic) by introducing
just a conserved current Jµ. We choose the following gauge and
asymptotic conditions for the current

Jr = 0 , Ju = O(r−2) , Jz = O(r−2) , (25)

which is consistent with the gauge choice of the gauge fields (22) and is
always achievable using the equivalent class of the current
Jµ ∼ Jµ +∇νk [µν].
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Let us assume the following ansatz for the
1

r
-expansion of the gauge field

Au =
A0
u(u, z , z̄)

r
+O

( 1

r2

)
, Az(z̄) = A0

z(z̄)(u, z , z̄)+
∞∑

m=1

Am
z(z̄)(u, z , z̄)

rm
,

(26)
and the current

Ju =
J0
u(u, z , z̄)

r2
+O

(
1

r3

)
, Jz(z̄) =

J0
z(z̄)(u, z , z̄)

r2
+
∞∑

m=1

Jmz(z̄)(u, z , z̄)

rm+2
.

(27)
The reason for not specifying further the expansions of the u-components
of Aµ and Jµ is that they are determined by the equations of motion.
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The current conservation equation

Ju =
J0
u(u, z , z̄)

r2
− 1

r2

∫ ∞
r

dr ′
[
γ−1
zz̄ (∂zJz̄ + ∂z̄Jz)

]
. (28)

The u-component of the Maxwell’s equations

Au =
A0
u(u, z , z̄)

r
+

∫ ∞
r

dr ′
1

r ′2

∫ ∞
r ′

dr ′′
[
γ−1
zz̄ (∂z∂r ′′Az̄ + ∂z̄∂r ′′Az)

]
.

(29)

The z(z̄)-components of the Maxwell’s equations

2∂uA
1
z = ∂zA

0
u + ∂z [γ−1

zz̄ (∂zA
0
z̄ − ∂z̄A0

z)] + J0
z , (30)

∂uA
m
z =

Jm−1
z

2m
− m − 1

2
Am−1
z − ∂z [γ−1

zz̄ (∂z̄A
m−1
z )]

m
, (31)

when (m ≥ 2).

The r -component of the Maxwell’s equations

∂uA
0
u = γ−1

zz̄ ∂u(∂zA
0
z̄ + ∂z̄A

0
z) + J0

u . (32)
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Inserting the solution of the classical Maxwell equations into the
charge yields

Qε = −
∫
=+
−

dzdz̄ γzz̄ ε(z , z̄)A0
u

= −
∫
=+

dzdz̄du ε
[
∂u(∂zA

0
z̄ + ∂z̄A

0
z) + γzz̄J

0
u

]
.

(33)

We decompose the charge into the linear and non-linear pieces as

QNL =

∫
=+

dud2z ε ∂u
(
∂zA

0
z̄ + ∂z̄A

0
z

)
, QL =

∫
=+

dud2z γzz̄ ε J
0
u .
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The non-linear pieces of the charges:

〈out|Q(0)
NL|in〉 =

1

2

√
2

1 + |w |2
lim
ωq→0

〈out|ωq a+(q)|in〉, (34)

with a concrete choice ε(z , z̄) = 1
w−z .

The Fourier relations:∫ ∞
−∞

du ∂uF (u) = 2πi lim
ω→0

[
ωF̃ (ω)

]
,∫ ∞

−∞
du u ∂uF (u) = −2π lim

ω→0

[
∂ω

(
ωF̃ (ω)

)]
, (35)

Stationary-phase approximation of the gauge-field mode expansion:

A0
z(z̄)(x) = − i

8π2

√
2

1 + zz̄

∫ ∞
0

dωq

[
a+(−)(ωq x̂) e−iωqu

− a†−(+)(ωq x̂) e iωqu
]
.
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Regarding the linear pieces, restricting ourselves to scalar charged
matter, we just need to use the boundary canonical commutation
relation[

Φ̄0(u, z , z̄),Φ0(u′,w ,w)
]

=
i

4
γww̄ Θ(u′ − u)δ2(z − w) , (36)

to obtain that

〈out|Q(0)
L |in〉 =

n∑
k=1

− ek
2(w − wk)

〈out|in〉. (37)

Assembling all these expressions, it is immediate to recover the
leading soft theorem in the asymptotic position space

lim
ωq→0

〈out|ωq a+(q)|in〉 =
1 + |w |2√

2

n∑
k=1

ek
w − wk

〈out|in〉. (38)
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The sub-leading soft factors

Soft theorems can then be thought as factorization properties that
scattering amplitudes must obey in a low-energy expansion:

Mn+1

(
p1, . . . , pn, q

)
=

(
S (0)

ωq
+ · · ·+ ωs−1

q S (s)

)
Mn(p1, . . . , pn)

+O(ωs
q) , (39)

where ωq and s are the energy and spin of the emitted boson. For
s = 1, 2, soft theorems display several orders in the energy ωq of the
emitted boson.
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For gauge theory, the sub-leading soft factor, which involves the
angular momentum operator Jµν , is

S (1) =
n∑

k=1

ek
qµε
±
ν Jµνk

pk · q
, (40)

The sub-leading and sub-sub-leading soft factors of gravity are

S (1) =
n∑

k=1

ε± · pk ε±µ qν J
µν
k

pk · q
, S (2) =

n∑
k=1

ε±µ ε
±
ν qρqσ J

ρµ
k Jσνk

ωq pk · q
. (41)

How should we understand the sub-leading factors in the context of
Ward identity of broken symmetry?
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Sub-leading soft theorems and symmetries

A pragmatic way is to first recast the sub-leading soft theorems into
the Ward identity of some unknown symmetries, then trying to
understand if those unknown symmetries can be recovered from
asymptotic symmetries with certain adaptations of boundary
conditions.
[Kapec, Lysov, Pasterski, Strominger 2014]
[Campiglia, Laddha 2014]

We have argued that the same asymptotic symmetry with the
sub-leading pieces of the associated charges (12) or (13) is
responsible for this sub-leading soft factors. This idea has been
partially succeeded in different theories.
[Conde, PM 2016]
[Conde, PM 2016]
[PM, Wu 2017]
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New memories

Is there a new kind of memories related to the sub-leading soft
theorems?

Yes. The first example was reported in gravitational theory. It is the
spin memory which is a Fourier transform of the sub-leading soft
graviton theorem.
[Pasterski, Strominger, Zhiboedov 2015]

Beams on clockwise and counterclockwise orbits acquire a relative
delay induced by radiative angular momentum flux.

We find a type of electromagnetic memory related to the sub-leading
soft photon theorem. It is a “magnetic” type, or B mode, radiation
memory effect. Rather than a residual velocity, we find a position
displacement of a charged particle induced by the B mode radiation
with memory.
[PM, Ouyang, Wu, Wu 2017]
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Electromagnetic memories

Consider a charge q with mass m moving in the presence of electric
fields

m
d2~x

dt2
= q ~E . (42)

It follows that once the wave has passed the charge has received a
kick given by

∆~v =
q

m

∫ ∞
−∞

~Edt, (43)

This is the electromagnetic analogue of the gravitational memory
effect.
[Bieri, Garfinkle 2013]
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Electromagnetic memory formulas in asymptotic analysis

In retarded coordinates

ds2 = −du2 − 2du dr + 2r2γzz̄dzdz̄ , γzz̄ =
2

(1 + zz̄)2
. (44)

With the following asymptotic behavior

A+
u =

A+0
u (u, z , z̄)

r2
+O(r−3),

A+
z = A+0

z (u, z , z̄) +
A+1
z (u, z , z̄)

r
+O(r−2),

j+
u =

j+0
u (u, z , z̄)

r2
+O(r−3), j+

r = O(r−4), j+
z =

j+0
z (u, z , z̄)

r2
+O(r−3),

(45)

the Maxwell’s equations ∇νFµν = 4πjµ yield

∂uA
+0
u = γ−1

zz̄ ∂u(∂zA
+0
z̄ + ∂z̄A

+0
z )− 4πj+0

u , (46)

2∂uA
+1
z = ∂zA

+0
u + ∂z [γ−1

zz̄ (∂zA
+0
z̄ − ∂z̄A+0

z )]− 4πj+0
z . (47)
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Kick memory

Inserting the E mode decomposition A+0
z(z̄) = ∂z(z̄)α(u, z , z̄) into (46)

leads to

DAD
A∆α = ∆A+0

u + 4π

∫ ∞
−∞

du j+0
u , (48)

where DA is the spherical covariant derivative.

The angular part of the electric fields are Ez(z̄) = Fz(z̄)u. They are
related to the memory formula as∫ ∞

−∞
duEz(z̄) = −∂z(z̄)∆α. (49)

From the standard analysis of the motion of a charged particle in the
presence of electric fields, (49) will leave a residual velocity to the
charged particle (a ‘kick’). Following the terminology of Bieri and
Garfinkle, the first term on the right hand side of (48) is called
ordinary ‘kick’ and the second one induces a null ‘kick’.
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Displacement memory

For the B mode part where we can set A+0
z = i∂zβ(u, z , z̄) and

A+0
z̄ = −i∂z̄β(u, z , z̄), it was proven that β = 0 at u = ±∞ in the

case of physically realistic source [Winicour 2014]. Obviously ∆β = 0,
which means no B mode ‘kick’ memory though it is mathematically
possible.

Alternatively we will propose a new type of memory which is defined
as

∆Γ =

∫ ∞
−∞

du β. (50)

In terms of the electric fields, one will get∫ ∞
−∞

du

∫ u

−∞
du′ Ez = −i∂z∆Γ,∫ ∞

−∞
du

∫ u

−∞
du′ Ez̄ = i∂z̄∆Γ.

(51)
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The new memory formula can be arranged into a nicer way:

iDAD
ADBD

B∆Γ = 2γ−1
zz̄ ∆(∂zA

+1
z̄ − ∂z̄A+1

z )

+ 4πγ−1
zz̄

∫ ∞
−∞

du (∂z j
+0
z̄ − ∂z̄ j+0

z ). (52)

Considering a very slowly moving charged particle, the electric field
dominates the motion of the charged particle. Hence the new memory
effect (51) with one more integration over u than the ‘kick’ memory
effect (49) will be a displacement of the charged particle.

Following the terminology of the ‘kick’ memory, we will refer to the
first term on the right hand side of (52) as ordinary displacement and
the second one as null displacement.
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Soft theorems and memories in higher dimensions

The triangle relation in higher dimension is less clear even at the
leading order.

The asymptotic symmetry (e.g. the BMS supertranslation in
gravitational theory) that is supposed to be responsible for the leading
soft theorem seems to be debatable. [Hollands, Ishibashi, Wald 2016]

The memory effect in higher dimension was suggested to be absent.
[Garfinkle, Hollands, Ishibashi, Tolish, Wald 2017]
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Soft theorems and memories in higher dimensions

we propose that the equivalence of the soft theorems and memories
should be understood in the following way: The classical computation
arises as a limiting case of the quantum results (soft theorems).
[PM, Ouyang 2017]

In practice, we consider the soft factor in asymptotic position space as
a classical field

S (0) = lim
ωq→0

〈out|ωq a+(q)|in〉
〈out|in〉

(53)

One can show that this classical field satisfy the classical equations of
motion.

The memory effects are determined completely by the classical fields
in the asymptotic region.
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The scalar theory

Soft scalar theorem

Mscalar
N+1 =

N∑
k=1

gk
pk · q

Mscalar
N +O(ω0), (54)

where gk are the coupling constants, q is the momentum of the soft
scalar and pk are the momenta of the hard particles.
[Campiglia, Coito, Mizera 2017]

The soft factor will be interpreted as the expectation value of the
scalar field in the process of scattering in momentum space at the low
energy limit

ϕd(ω, ~q) =
N∑

k=1

gk
pk · q

, (55)

where d denotes the dimension of the spacetime.
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Performing a Fourier transformation, one obtains the scalar field in
the position space as

ϕd(x) =
N∑

k=1

∫
dd−1q

(2π)d−1

1

2ω

ηkgk
q · pk

(e iq·x + c.c.) (56)

where ηk = 1 or −1 for an outgoing or incoming particle.

Defining the generating function

Φ ≡
∞∑
n=0

1

n!
(πs)nϕ4+2n. (57)

Then ϕd(x) can be derived from the generating function easily by
taking the limit

ϕ4+2n(x) = lim
s→0

1

πn
dn

dsn
Φ (58)
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Finally the generating function has the following form

Φ =
N∑

k=1

gkΦk , (59)

where

Φk =
ηk

4π
√

(x · pk)2 − p2
kx

2 − p2
ks

(Θ(t−
√
r2 − s)−Θ(t+

√
r2 − s)).

(60)

This is nothing but the radiation field obtained from the solutions of
the massless scalar wave equation!
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Radiation fields

The radiation fields were introduced by Dirac to investigate the
radiation of electrons. They are defined by the difference of the
retarded and advanced solutions.

In d = 4 + 2n dimensional spacetime, the retarded and advanced
Green’s functions satisfying the equation

−ηµν∂µ∂νGd(x − x ′) = (∂2
t −

3+2n∑
i=1

∂2
xi

)Gd(x − x ′) = δd(x − x ′). (61)

are given by

G ret
4+2n =

1

2πn+1
δ(n)((t − t ′)2 − |x− x′|2)Θ(t − t ′), (62)

G adv
4+2n =

1

2πn+1
δ(n)((t − t ′)2 − |x− x′|2)Θ(t ′ − t). (63)
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Considering the source corresponding to a particle created or destroyed at
the origin

Sdk =

∫ ∞
0

dτδd(xµ − ηkpµk τ), (64)

we obtain the retarded solution for the wave function

−ηµν∂µ∂νϕret
dk = Sdk , (65)

as

ϕret
4+2n k =

∫ ∞
0

dτ

2πn+1
δ(n)(−(x − vkτ)2)Θ(t − Ekηkτ). (66)
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Introducing the retarded generating function

Φret
k ≡

∞∑
n=0

1

n!
ϕret

4+2n k(πs)n,

=

∫ ∞
0

dτ

2π
δ(−(x − pkτ)2 + s)Θ(t − Ekηkτ).

(67)

For massive particle source, we have

Φret
k =

Θ(ηk(t −
√
r2 − s))

4π
√

(x · pk)2 − p2
kx

2 − p2
ks
. (68)

The generating function for the advanced solution with massive
particle source can be derived in a similar way

Φadv
k =

Θ(ηk(t +
√
r2 − s))

4π
√

(x · pk)2 − p2
kx

2 − p2
ks
. (69)
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A general source can be written as a linear superposition of such
created and destroyed particles (64), so the solutions can be written
as a superposition of individual ones.

The radiation field for the case of a generic source is obtained as

Φrad =
N∑

k=1

gk

(
Φret
k − Φadv

k

)
(70)

In certain gauge, the Maxwell’s equations and linearized Einstein
equations take the form of a wave function (61) of each components.
Hence, the same analysis can be extended to electromagnetic theory
and linearized gravity theory easily.
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Open questions

Super Yang-Mills, Supergravity...... and Memories

Double soft theorem and Memories

New gravitational memories?

Thanks for your attention!
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