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Overview
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sl :
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か(O|o) = 一 区 ・四つ 。

• Axion electrodynamics in (3 + 1) dimensions exhibits instability

in the presence of background time dependent axion ∂tφ or electric field.

• Generalized chiral instabilities: universal mechanism of these instabilities

• Instabilities tend to be weakened.

• B & ∇φ with linking number are generated.

• Stability of generated fields can be stable due to non-invertible symmetries.
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Gapless modes = modes without energy (mass) gap

• Dispersion relation: ω = 0 for k = 0 .

• Long wave excitation by infinitesimal energy → Dominating infrared (IR) physics

• Characterizing phase of matter: gapless phase

• Ubiquitous in physics: photon, phonon, Nambu-Goldstone bosons

The Lorentz symmetry is important for gapless modes.
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Gapless modes and Lorentz symmetry

With Lorentz symmetry:

• Linear dispersion ω2 = k2
(I neglect higher order terms in this talk)

Without Lorentz symmetry (e.g., explicit breaking by background fields)

→ possibility of corrections in IR

• 1st order of ω: ω2 = αω + k2 → gapped mode ω = α+ 1
α
k2

• 1st order of k: ω2 = βk + k2 → unstable mode

2 / 26



Unstable mode

• Dispersion relation ω =
√
k2 + βk

• For β < 0, there is instability ω = i
√
|βk| − k2 in finite IR region 0 < |k| < |β|

(Tachyonic mode e−iωt+ikx ∝ e

√
|βk|−k2 t

)

Such an instability arises in realistic systems!
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Axion electrodynamics = axion φ + photon aµ + topological coupling [Wilczek ’87][3]

Action (massless axion & photon)

S = −
∫
d4x

(
v2

2
∂µφ∂

µφ+
1

4e2
FµνF

µν +
1

16π2
φFµν F̃

µν

)

v: decay constant, e: coupling constant (I sometimes omit them)

• Axion φ: pseudo-scalar field, photon Aµ: U(1) gauge field with Dirac quantization condition

Features

1. Simple and ubiquitous in modern physics

QCD axion, inflaton, moduli from string theory, π0 meson, quasi-particle excitation,...

2. Cubic topological coupling φFµν F̃µν : determined by chiral anomaly in UV

Toy model of 10d, 11d supergravities ∼ C3 ∧ F4 ∧ F4 [Townsend ’93; Harvey & Ruchayskiy ’00] [1, 2]

Cubic topological coupling φFµν F̃µν leads to non-trivial effects
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Four effects due to topological coupling

• Induced current: ∇×B − ∂tE = 1
4π2 (B∂tφ−E ×∇φ)

Chiral magnetic effect [Fukushima, et al. ’08]; anomalous Hall effect [Sikivie ’84] [4, 5]

• Induced charge: ∇ ·E = − 1
4π2 B · ∇φ [Sikivie ’84]

• Photon to axion: (∂2
t −∇2)φ = 1

4π2 E ·B

Background axion velocity ∂tφ = const → instability of photon
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Chiral instability

Review based on Akamatsu & Yamamoto ’13 and so on



Chiral instability [Carroll, et al. ’89; Joyce & Shaposhnikov ’97; Anber & Sorbo ’07; Akamatsu & Yamamoto ’13] [6, 7, 8, 9]

→ → が 醼頲、

• Ampère law ∇×B = 1
4π2 B∂tφ

• Background ∂tφ 6= 0 → j ∝ B amplifies magnetic field

Dispersion relation?
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Dispersion relation

C = ∂tφ

For k = (k, 0, 0), EOM is

(ω2 − k2)


a1

a2

a3

 = iC


0

−k

k



a1

a2

a3


Instability in IR region k < C

• Tachyonic mode ω = i
√
Ck − k2

鰭
↑
unstable

Is the instability pathological?
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Instability tends to be weakened (linear analysis)

○火]
月

→ EftelB <0
∂tφ decreases (linear analysis)

• Faraday law: ∇×E = −∂tB

• EOM of axion: ∂2
t φ = 1

4π2 E ·B < 0

Generated magnetic field is stable
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Generation of stable magnetic field

○火]
月

→ EftelB <0
• EOM of axion ∂µ(∂µφ+ 1

8π2Aν F̃
µν) = 0 →

∫
d3x(∂tφ+ 1

8π2 A ·B) is conserved

• Decrease of ∂tφ → increase of B with magnetic helicity
∫
d3xA ·B

• Stability of B = stability of magnetic helicity

類に醎
"

料一
• Applications: generation of magnetic fields in cosmology and neutron stars

[Joyce & Shaposhnikov ’97; Anber & Sorbo ’07; Akamatsu & Yamamoto ’13]

∂tφ: chiral chemical potential or time deriv. of inflaton

Physical meaning of magnetic helicity?
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Magnetic helicity = linking number of magnetic flux [Demoulin, et al., ’06]

が
Consider magnetic flux tubes for simplicity.∫

d3xA ·B = 2Φ1Φ2 Link (C1, C2)

• Φ1, Φ2 magnetic flux of flux tubes C1, C2

• Link (C1, C2): linking number between C1 & C2

Derivation: use Biot-Savart law A(x) = 1
4π

∫
d3x′

B(x′)×(x−x′)
|x−x′|3
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Q. How universal is the chiral instability? [10]

「國
Similar instabilities have been found in the context of holography

• Axion ED in background elec. field [Bergman et al., ’11; Ooguri & Oshikawa ’11](massive axion) [?, 10]

• (4 + 1) dim. Maxwell-Chern-Simons thy in background elec. field [Nakamura et al., ’09] [11]

Electric fields decrease? Magnetic fields with topological quantities increase?
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Result [Yamamoto & RY, ’23]

• Decrease of bg. elec. fields & increase of mag. fields with topological quantities hold for them.

• Further generalization is possible

Generalized chiral instabilities

• Setup: massless Abelian p-form gauge theories with cubic topological couplings in flat spacetime

• IR instabilities in background elec. fields

• Decrease of bg. elec. fields & increase of mag. fields (linear analysis)

• Mag. fields are protected by non-invertible symmetries

In this talk, I consider axion ED in elec. field for concreteness.
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Instability of axion electrodynamics in background electric field

as an example of generalized chiral instabilities

Yamamoto & RY, 2305.01234



Four effects due to topological coupling

• Induced current: ∇×B − ∂tE = 1
4π2 (−E ×∇φ+B∂tφ)

Anomalous Hall effect [Sikivie ’84] [4]

• Photon to axion: (∂2
t −∇2)φ = 1

4π2v2
E ·B

Background E → instability of ∇φ & B
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Instability of axion ED in bg. elec. field [Yamamoto & RY, ’23]

↑
区 B

i. ※ →灣 →

Ei
sl :

↑区 B B ft
がいっ →越が が趨

か(O|o) = 一 区 ・四つ 。

Amplification of ∇φ & B due to

• Ampère law ∇×B = − 1
4π2 E ×∇φ

• EOM of axion ∇2φ = − 1
4π2 E ·B

Dispersion relation?
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Dispersion relation [Bergman et al., ’11; Ooguri & Oshikawa ’11]

For k = (k, 0, 0), E = (0, E, 0) EOM is

(ω2 − k2)


vφ

a1

a2

a3

 = i
E

v


0 k

0

0

−k 0




vφ

a1

a2

a3


Instability in IR region k < E

v

• Tachyonic mode ω = i
√
E
v
k − k2

鰭
↑
unstable

Amplification of ∇φ & B → decrease of E
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Decrease of E [Yamamoto & RY, ’23]

枠

f.; 。.

Induced charge screens elec. field

• Elec. Gauss law ∇ ·E = − 1
4π2 B · ∇φ

• Direction of induced elec. field is opposite to E

Generated φ and B are stable due to dielectric polarization
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Increase of dielectric polarization [Yamamoto & RY, ’23]

枠
・鼷・憗齒配☆

• Gauss law ∇ ·E = − 1
4π2 B · ∇φ → conservation of elec. flux

∫
S dS · (E + 1

4π2 φB)

• E decreases → dielectric polarization
∫
S dS · φB increases

• Stability of ∇φ and B = stability of dielectric polarization

Topological meaning of
∫
S dS · φB? (cf. magnetic helicity & linking number)

17 / 26



∫
S dS · φB: linking number of B & ∇φ on S [Yamamoto & RY, ’23]

憖::、趙第 1で幽が州で樾山 = 。

Consider flux tube of B & thin wall of ∇φ

• B: two points with signs, ∇φ: circle on integral surface S

• Sign of φ changes between outside and inside the circle.

• If circle surrounds either point, surface integral is non-zero, otherwise it is zero.

Generated B and ∇φ are topologically stable.

I will call the integral “generalized magnetic helicity”
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Summary of instability of axion ED in E

↑
区 B

i. ※ →灣 →

Ei
sl :

↑区 B B ft
がいっ →越が が趨

か(O|o) = 一 区 ・四つ 。

• Background E → instability

• Tachyonic generation of B & ∇φ

• Decrease of E

• Stable ∇φ and B due to generalized magnetic helicity
∫
S dS · φB

For further generalization, please see our paper [Yamamoto & RY ’23].
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Magnetic helicity and non-invertible symmetry



Conserved charges ⇒ symmetries? (converse of Noether theorem)

For the stable magnetic fields, conserved charges e.g.,
∫
d3x(∂0φ+ 1

8π2 A ·B) are important.

Q. Does a symmetry exist for this charge?

A. Yes, but it cannot be an ordinary symmetry.

Q. What is the problem with the conserved charge or symmetry generator, e.g.,

U = exp

(
iα

∫
V
d3x(∂0φ+

1

8π2
A ·B)

)
for α ∈ R, V : closed 3d space

acting on axion UeiφU† = eiαeiφ

A1. Just a consequence of chiral anomaly (assuming a UV model with Dirac fermions)

A2. Exp. of magnetic helicity exp
(
iα
∫
d3x 1

8π2 A ·B
)

is not large gauge invariant, so U is not physical

Why does the magnetic helicity
∫
d3x 1

8π2 A ·B violate the large gauge invariance?
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On large gauge invariance of magnetic helicity (1/3)

Large gauge invariance = Dirac string should be invisible

• Magnetic monopole
∫
S B · dS = 2πm

• Dirac string = unphysical magnetic flux tube to have single-valued A

• Invisibility of Dirac string: independence of the choice of Dirac strings

• Magnetic helicity depends on the choice of Dirac strings

-

-Dirae
.5t
は⑬ 〉

0 ①] ミ
”

" 回= へ ハO ミ. 0) … ハ

A more precise statement is...
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On large gauge invariance of magnetic helicity (2/3)

We assume that exp
(
iα
∫
V d

3x 1
8π2 A ·B

)
is a unitary operator.

• Problem: integrand is not gauge invariant.

• Integrand can be gauge invariant using Stokes theorem with ∂ΩV = V

exp

(
iα

∫
V
d3x

1

8π2
A ·B

)
= exp

(
iα

∫
ΩV

d4x
1

16π2
Fµν F̃

µν

)

が
• RHS is manifestly gauge invariant, but has ambiguity of choice of ΩV

• We require the absence of ambiguity

が
に が
t.i.io

。
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On large gauge invariance of magnetic helicity (3/3)

• The requirement means

exp

(
−iα

∫
Ω
d4x

1

16π2
Fµν F̃

µν

)
= 1

が
に が
t.i.io

。

• eiα = 1 because
∫
Ω d

4x 1
16π2 Fµν F̃

µν ∈ Z

U ∝ exp
(
iα
∫
V d

3x 1
8π2 A ·B

)
does not generate any symmetry transf.

However...

We can modify magnetic helicity exp
(
iα
∫
d3x 1

8π2 A ·B
)

for α ∈ 2πQ (e.g., α = 2π
q

, q ∈ Z)

in a gauge invariant way at the expense of invertibility (unitarity)!
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Gauge invariant magnetic helicity [Choi, et al., ’22; Córdova & Ohmori, ’22][12, 13]

Modification using partition function of Chern-Simons theory

exp

(
i

4πq

∫
V
d3xA ·B

)
→
∫
Dc exp

(
i

∫
V
d3x

(
−
q

4π
εijkci∂jck +

i

2π
εijkci∂jAk

))

• Essentially, it is a square completion 1
q
x2 → −qy2 + 2xy so that q is in numerator

• RHS: partition function of U(1) Chern-Simons theory

• cµ: auxiliary U(1) gauge field on V , Dirac quant.
∫
∂µcνdS

µν ∈ 2πZ
• Large gauge invariant: q is in numerator

• Magnetic helicity: naive expression obtained by EOM Fµν = qcµν only for trivial Dirac quantization
∫
B · dS = 0

• Invertibility is lost

• path integral (sum) over phase factors (e.g., cos θ ∼ eiθ + e−iθ is non-invertible)
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Non-invertible symmetry [Choi, et al., ’22; Córdova & Ohmori, ’22][12, 13]

We have conserved & gauge invariant quantity

Generator of non-invertible symmetry

D =

∫
Dc exp

(
i

∫
V
d3x

(
−
q

4π
εijkci∂jck +

i

2π
εijkci∂jAk

))
× exp

(
2πi

q

∫
V
d3x∂0φ

)

• Conservation law = EOM of axion

• Fractional rotation on axion: Deiφ = e
2πi
q eiφD

• Non-invertible transf. on magnetic monopole: D|monopole〉 = 0 (depending on q and V )

• Stability of magnetic helicity = existence of non-invertible symmetry

• Generalization: e.g.,
∫
S φB · dS → non-invertible 1-form symmetry [Choi, et al., ’22; RY ’22] [14, 15]
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Magnetic helicity = linking number [Yamamoto & RY, ’23]

Non-invertible symmetry can capture linked magnetic fluxes

川 j.gg] の epぼ蛞いでしい )

• Relation “
∫
d3xA ·B ∝ linking number” still holds (with some technical modification)
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Summary

↑
区 B

i. ※ →灣 →

Ei
sl :

↑区 B B ft
がいっ →越が が趨

か(O|o) = 一 区 ・四つ 。

• Axion electrodynamics exhibits instability in the presence of background time dependent axion ∂tφ or

electric field.

• Generalized chiral instabilities: universal mechanism of these instabilities

• Instabilities tend to be weakened.

• B & ∇φ with linking number are generated.

• Stability of mag. fields is due to non-invertible symmetries.

• We can extend the mechanism to massless Abelian p-form gauge theories with cubic topological

interactions (see our paper [2305.01234])

• Future work: non-linear analysis, final state, including gravity, applications,...



Magnetic helicity = linking number (1/3)∫
d3xA ·B = 2Φ1Φ2 Link (C1, C2)

が
• Magnetic field

B(x) = Φ1J(C1;x) + Φ2J(C2;x) with J(C1;x) =

∫
C1

δ3(x− r)dr

• J(C1;x): delta function on C1 line integral ↔ volume integral∫
C1

v(r) · dr =

∫
d3x

∫
C1

dr · v(x)δ3(x− r) =

∫
d3xv · J(C1)

How can A be solved?



Magnetic helicity = linking number (2/3)

A = Φ1K(S1) + Φ2K(S2) with K(S1) =

∫
S1

δ3(x− r)dS(r)

• K(S1): delta function on S1, J(C1) = ∇×K(S1)

Derivation: Stokes theorem & partial integral∫
d3xv · J(C1) =

∫
C1

v(r) · dr =

∫
S1

∇× v(r) · dS

=

∫
d3x(∇× v) ·K(S1) =

∫
d3xv · ∇ ×K(S1)

We can explicitly evaluate

∫
d3xA ·B



Magnetic helicity = linking number (3/3)

• Magnetic helicity ∫
d3xA ·B = 2Φ1Φ2

∫
d3xK(S1) · J(C2) = 2Φ1Φ2

∫
C2

K(S1) · dr

• Using ∫
C2

K(S1) · dr = intersection number of S1 & C2 = Link (C1, C2),

闢 で
we have ∫

d3xA ·B = 2Φ1Φ2 Link (C1, C2)
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