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Asymptotic Conservation laws

Asymptotic conservation laws :

Q+[€+] |Zj = Q7[e7]] 77

Z+ is the u — —oo sphere of Z+.
77 is the v — oo sphere of 7.




Asymptotic Conservation law

e C(lassical conservation law :

Gl = &l

Qo is defined in terms of radial component of electric field.

e At quantum level, S-matrix has to satisfy the Ward identity :

<out| @S — S Q@ lin>= 0.



Asymptotic Conservation law

e C(lassical conservation law :
Gl = @l z
e At quantum level,
< out| QJS - 5@, lin>= 0.

This Ward identity is equivalent to leading soft photon theorem.
[He, Mitra, Porfyriadis and Strominger,1407.3789; 1703.05448]



Soft theorems

e In the soft limit, the amplitude factorises into lower point
amplitude times a universal 'soft factor’.
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Soft theorems

e In the soft limit, the amplitude factorises into lower point
amplitude times a universal 'soft factor’.

e Soft expansion of loop amplitudes :
. So
lim Amp,,1(pi, k) = | = + Stlogw + ... |[Amp,,(pi).
w—0 w

k = w(1,§) is the soft momentum.
n is number of hard particles in the scattering process.
(n+ 1)* particle is the soft photon.

e Soft factors are universal.

n
€.pi
502 E €; .
i Pid




Subleading term for loop amplitudes

Soft expansion of loop amplitudes is given by :

. S
lim Amp,, . 1(pi, k) = [;0 + Silogw + ] Amp,(pi).

w—0

The Sahoo-Sen soft theorem (arxiv:1808.03288) is equivalent to a
new asymptotic conservation law.
(Campiglia and Laddha, arxiv:1903.09133 and SB, arxiv:1912.10229.)



Subleading term for loop amplitudes

Soft expansion of loop amplitudes is given by :

. S
lim Amp,, . 1(pi, k) = [;0 + Silogw + ] Amp,(pi).

w—0

The Sahoo-Sen soft theorem (arxiv:1808.03288) is equivalent to a

new asymptotic conservation law.
(Campiglia and Laddha, arxiv:1903.09133 and SB, arxiv:1912.10229.)

We will discuss the proof of above asymptotic conservation law in
this talk.



Long range forces

e logw term in the soft expansion is related to the long range
1
forces (V ~ +).
e Asymptotically particles are not free. They radiate and and
this produces the logw term.
e We will incorporate the effect of long range forces on
asymptotic dynamics.

e This leads to new asymptotic conservation laws.



Plan

(Based on arxiv:2007.03627)

e Part 1 : New asymptotic conservation laws

We discuss Q,,-conservation laws that are directly related to
long range electromagnetic force.

e Part 2 : Classical soft theorems for m = 2,3

We discuss the soft theorems related to above @, charges.



Part 1

Asymptotic conservation laws for classical scattering.



Scattering process

Let us consider scattering of charged particles where n’ number of
particles come in and interact in a finite region say a sphere of
radius L around r = 0. At the end, they produce (n — n’) number
of outgoing particles.

This interaction could be of any sort or of any strength.



Scattering process

For r > L, the particles are apart enough so that only possible
interactions between them would be the long range forces.
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e Let us first restrict ourselves to the leading order in coupling
e, then we can ignore the effect of long range electromagetic
interactions on the asymptotic trajectories.

e Hence an incoming particle has the trajectory :
xt' = [VI'r + dj]o(-T — 7).
Similarly, an outgoing particle has the trajectory :

xt' = [VI'r + dj]0(r — T).



Asymtotic dynamics at leading order

e We will calculate F,, perturbatively in e and %

e Let us first restrict ourselves to the leading order in coupling
e, then we can ignore the effect of long range electromagetic
interactions on the asymptotic trajectories.

e Hence an incoming particle has the trajectory :
xt' = [VI'r + dj]o(-T — 7).
Similarly, an outgoing particle has the trajectory :

xt' = [VI'r + dj]0(r — T).

jU(X'):/dT[ i eiVig 64(x' —x;) O(t — T) + in |.

i=n'41



F.. at O(e)

e WegetatZ™ :

m

u
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The coefficients are a function of X.



F.. at O(e)

e WegetatZ™ :

m

u
F/»“’|ZiNZF+.' .

m,n
m<n

" represent terms that are atleast exponentially suppressed.
e In particular, we have :

2,1 2,0
F34|ZfZUFr(A7 ) P Fr(A7 o

A denotes S? co-ordinates.
The coefficients are a function of X.

e Long range forces lead to new logarithmic terms in field strength.



Asymptotic dynamics including subleading term

PPl
mj % = € F’W(T) V,',,.
T



Asymptotic dynamics including subleading term

07 xt
miTTé = e FM(1) V.

Substitute O(e) solution of F*” in above equation to get

%x!' e2
mj 87’2 :O(?)

Hence we get :

1
xt' = VI 4 cllog T+ d,-+(9(;).



Asymptotic dynamics including subleading term

We have :
Hw m m 1
= VI'r 4 clllog T+ d + O(2).
1 47.‘- '

€j € — PRIy R
j=n'+1, [(pi-pj)* — m; mj] /
J#i



Asymptotic dynamics including subleading term

We have :

1
xt'= V' + c'logT + d —1—(’)(;).

H = 1 Z ee pl pj m P, +m2m2pjt
B D S e e
j=n"+1,
J#i

n

e Above expression represents effect of other particles j on the i
particle.

e ¢;'s for an outgoing particle includes contribution only from
outgoing particles.



O(e?) fall offs in the field strength

e Using LA, = —jy,

Ay (x) = % / dr 6( [x — X(V)P) jo (7).

Now j, includes O(e3) terms.

e The fields admit new fall offs :

(27_1)

FrzA‘Ii = uF,,y 7 +logu Fr(,ﬁ2\7|og) +u° Fr(f\’o) to



O(e?) fall offs in the field strength

e At future :

1 - | 1
FrA‘u—)—oo = rj u Fr(A27 2 + logu Fr(j’og) -+ ] + O(ﬁ) .

(1)

e We repeat the similar calculation at past null infinity (4).

log r loz.0 1
Foalyosoo = 7rg2 VO Flos0) | O(5) -



O(e%) fall offs in the field strength
e At future :
1 - 0 1
FrA‘u—>—oo = rj u FfAz7 2 + logu F(jJ g) -+ ] —i—O(ﬁ) .

(1)

e We repeat the similar calculation at past null infinity (4).

log r loz.0 1
Fralyosoo = ?gz VO Flos0) | O(5) -

e We show that :
27' ' I 70 A
Fa®®) |z = FRE(=%) | 1.

This law was suggested by Campiglia and Laddha. We proved
it. This is the m = 1 conservation law.



Asymptotic dynamics including subsubleading term
e Asymptotically particles accelerate under long range force and
radiate.

e This radiation backreacts on the particles and corrects the
trajectory of matter particles.



Asymptotic dynamics including subsubleading term

e Asymptotically particles accelerate under long range force and
radiate.

e This radiation backreacts on the particles and corrects the
trajectory of matter particles.
2, M
.
i = e FH(r) Vi (7).
Substituting F,,, ~ O(e?) :

Pxt e ,logT
~ S

—r e
OT2 T2 73

m; +

Thus, asymptotic trajectories of the particles are corrected to :

log T
xt'=VI' 4+ cl'logT + dj + fio’%- (2)



O(e) fall offs in the field strength

e Including the O(e®) terms around future null infinity :

_ _ 2
Falusoo = 12 FO 2 4 ylogu FE 4 (logu)? FG8) 4



O(e) fall offs in the field strength

e Including the O(e®) terms around future null infinity :

_ _ 2
Faluosoo = 12 FC72 4 ulogu F ™D 4 (logu)? FGE) 4

e Expansion around the past null infinity is given by :

log r loz.0 log r)? l082.0 1
Foalvoroo = 250 0 Flee®) o LEDD o o0 o)



O(e) fall offs in the field strength

e Including the O(e®) terms around future null infinity :

_ _ 2
Flus oo = U° Fr(f\’ 2 4 ulogu Fr(j’ s (log u)? Fr(j’log N
e Expansion around the past null infinity is given by :

log r loz.0 log r)? l082.0 1
FrA|v—><>o — ,i VO Fr(Aog’ ) + ( 53 ) VO Fr(Aog ,0) 4 O(ﬁ) )

e We proved following O(e®) conservation law :

3,log?) [ A log?,0 ~
FOER) g = FEE O (-2)),-

r +

This is the m = 2 conservation law.



Summary so far

We have established conservation laws for following modes of F,4 :

log u log r
>—and ——.
r r

| 2 | 2
(’)(e5): (oiu) and (oir).




m'" order asymptotic conservation laws

o We expect these conservation laws to exist for all m-modes of
F,A .

omi1y . (logu)™ (logr)™
O(e ) e and pers

Proved for m=1,2,3.



Concluding Part 1

e Classical theory admits a set of conservation laws (m =1,2,3) :
QlYall v = QulYa] |I;'

e Strominger and his colloborators have established a
correspondence between asymptotic conservation laws and soft
theorems.



Concluding Part 1

e Classical theory admits a set of conservation laws (m =1,2,3) :
QlYall v = QulYa] |I;'

e Strominger and his colloborators have established a
correspondence between asymptotic conservation laws and soft
theorems.

e As we discussed earlier, Q1-conservation law is equivalent to the
Sahoo-Sen log w soft theorem.

[Ql,s}zo

(Campiglia and Laddha, arxiv:1903.09133; SB, arxiv:1912.10229.)



Form>1

e It can be argued that Qm,-conservation laws are related to
following terms in soft expansion of loop amplitudes :

w—0

S
lim Amp 1 (pis k) = |2 + 3 S ™ Hloguw™ + ...



Form>1

e It can be argued that Qm,-conservation laws are related to
following terms in soft expansion of loop amplitudes :

S
lim Amp 1 (pis k) = |2 + 3 S ™ Hloguw™ + ...

w—0

e These mt" level soft photon theorems for quantum amplitudes
have not been explored for m > 1.

e Let us discuss the classical version of soft theorems for
m=23.



Part 2

Classical Soft theorems.



Classical Soft theorems

e Laddha and Sen (arXiv:1801.07719) have discussed the
classical limit of soft theorems.

) S
lim Amp,,1(pr. k) = |22 + Sy logw + ... | Amp, (p).

w—0
e Soft theorems control the classical radiative field in low energy

limit. Classical limit of soft theorems :

lim e'A,(w) = [% + S¢S Jog w + } :

w—0

e S5£13ss was derived classically by Saha, Sahoo and Sen
(arXiv:1912.06413).



Classical Soft theorems

Next goal : derive the subsubleading universal terms.

Jm, ¢ Ay(w)
- [50

= 4 58135 |og w 4 S512%50(log w)? + S5 w2 (logw)® + ...
w



Late time radiative field

Steps :

e We consider a generic classical scattering process of charged
bodies we had discussed earlier.

e We calculate the radiative component of the electromagnetic
field emitted at late times.

e This will get related to soft field via a Fourier transform.



Late time radiative field

e Let us derive the universal terms that appear upto O(e®).

Using DA, = —j,.,

An(x) = 5 [ dr 8 b= X (7)) Jnlr).



Late time radiative field

e Let us derive the universal terms that appear upto O(e®).

Using DA, = —j,.,

e We need to retain the subsubleading terms in asymptotic
trajectories of the particles (5):

|
xt = VI 14 ' log T+ di + fiy il X

so that j, includes O(e®) terms.



Universal terms in late time radiative field upto O(e)

ol B
A = g e + S

log u
U2

+ [bLl)]i } + ..., u— too.



Universal terms in late time radiative field upto O(e)

1 + 0
AN|I+:R|:EMU

0
L B

log u
+ [BFF =

} + ..., u— Foo.
u

e 10 term is the 'memory term’. Rederiving the leading soft

factor :

=2 q.pi

out

_Z €iPiu
o q-pi
/I+ du 9, e“Au:Ze,-

€.pj
q.pi

e The next term is the tail term discussed by Saha, Sahoo, Sen.
It is related to the m = 1 classical soft theorem via Fourier

transform.



Universal terms in late time radiative field upto O(e)

I S P [b;(to)]i (1)1 log u
Aulrs = | aru® + P 4 [

We derive the subsubleading term.

(B = eifa.ci cio — pia(q ) + P06 q

out q.pi m;

[bM] = Zei (q.¢i cio — Pio(q G)° + &f, q

n q.pi mj

} + ..., u— %oo.

P
m;

R

i



Universal terms in late time radiative field upto O(e)

1 [b(o)]i log u
Al = —[ 0 R (1)]+ +00.
|+ 4| + . + [by] ) + .., u— oo

The subsubleading term is interesting because
e It is universal : completely independent of the details of the
scattering process.
o |t is related to the »>-conservation law, hence tied to a soft
theorem.



Classical soft theorem for m = 2

" iwr 1
Au(w) = :wir [ ” So + 583 logw + S5 w(logw)? + ] as w — 0.




Classical soft theorem for m = 2

" iwr 1
Au(w) = Zﬂir [ ” So + 583 logw + S5 w(logw)? + ] as w — 0.

The coefficient of w(logw)?
class 1 - q'CI v v
Sglass — ffze,- [q.c; [pi.e—— — ci.e| —euqu [PI'f — p} '] }
2 & pi-q
recalling (5)

lo
xt'=VI'r+c'logr + di + fiy 8T,



Classical soft theorem for m = 2

" iwr 1
Au(w) = erir [ ” So + 583 logw + S5 w(logw)? + ] as w — 0.

The coefficient of w(logw)?
1 < q.ci
class . + . . . I~ 2 VK
559 = 5 E_ € [q.c, [p,.epi'q Cj.€ ] €nqu [pi' 7 — pi'f, ]}

recalling (5)

lo
xt'=VI'r+c'logr + di + fiy 8T,

e This term is O(e%), hence in the quantum amplitudes it will
appear at 2-loop order.



Higher order universal terms in the soft radiative field

e We carry out similar calculations at higher orders in e.

e The asymptotic part of the trajectory admits following universal
corrections that are governed by the long range electromagnetic
force. (5)

S (log 7)™
x{ = VjoT + Cjg log T + dis + Z (n,')’"figm) e

m=1

We will find the resultant radiative field.



Classical soft theorems
e We show for m=2,3,4:
y

’W.’ [ So + Z Sdass ym=1(log W)™ + ]

Air

A~u|w%0 —

The form of 5SS is given by :

class _ m—1
Sm m| Z[ i) —eci] (q.¢))"
V1. Vm—1
+ € Qui--Quy_y f.,
m—+1
Piv, o 1 (m'—1)
]:i;uq-uum =m Z €iCivy - Ciym+17m/m7.’n o pI[Vm f;M] :
m
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Conclusion

A new set of Qn-conservation laws (m = 1,2,3). Charges are
O(e®*™*1) and tied to long range forces.

Expected to be related to soft theorems for loop amplitudes.

We derived these soft theorems for classical field for
m=234.

e There is compelling evidence that this structure holds for all
m's. These interesting questions need to be explored.



THANK YOU !



Comparison between future and past solutions (1)

Using LA, = —jy,

An(x) = 5 [ a7 8 (x = X (D)) Jnlr).

e The retarded root of the delta function is
70=—Vi(x—di)— [ (Vix = Vid)?+ (x—d)? ]"%. ()
e Around future :

1
T0|I+ = m + O(;)

e Around past :

Tolz- = =2r (V2 +2.V;) + O(r°).



Asymptotic dynamics including subsubleading term
Thus, asymptotic trajectories of the particles are corrected to :

I
xt'= VIt + ' logr + di + fiy ogv-y
-

where
c=— : i e P T ;pi o+ mim;p)
R R CT
Jj=n"+1,
J#i
n w 2 p
pi-pj P; + m;p;
f: E m;m 2Q' [3m,mjpj o (Pi-p; ! d J)

M) [(pi-pj)> — mim?]>/2

i#

[pi-pj ¢ — (pi-pj ¢} — pj-ci Pf)]}
[(pi-pj)? — mzm?]3/2 '

(5)



Log w soft theorem

® Siog has 2 parts. A part that survives in the classical limit.

i e*q¥ PP
Sia” = efe 3 m?mjg PifuOin) P
) \/(Pi-Pj)2 — m;m;

€~ r i s
et (P

i#j
e This term appears in the soft radiation emitted in a classical

scattering.
e Important to note that this term vanishes for massless particles.



Log w soft theorem

e The other part is purely quantum and does not appear in
classical physics.

f(pis pj)

quan __ y Pj

S = e 3 L g L)
i#) \/(plpj) —m; m_]

e The exact form of this expression is not important for us.
Interesting to note the relative factor of i between two terms.



