|| Sri Sainath ||

New asymptotic conservation laws for electromagnetism

Sayali Atul Bhatkar, IISER Pune.

4th International conference on Holography, String theory and Discrete approach, Hanoi, Vietnam.

Contents

- Introduction : Asymtotic conservation laws and Soft theorems.
- Q_m -conservation laws in presence of long range forces.
- Classical soft theorems for m = 2, 3.
- Conclusion

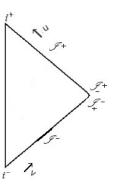
Asymptotic Conservation laws

Asymptotic conservation laws:

$$Q^+[\epsilon^+] \mid_{\mathcal{I}^+_-} = Q^-[\epsilon^-] \mid_{\mathcal{I}^-_+}.$$

$$\epsilon^+(\hat{x}) = \epsilon^-(-\hat{x}).$$

 \mathcal{I}_{-}^{+} is the $u \to -\infty$ sphere of \mathcal{I}^{+} . \mathcal{I}_{+}^{-} is the $v \to \infty$ sphere of \mathcal{I}^{-} .



Asymptotic Conservation law

Classical conservation law :

$$Q_0^+[\epsilon^+] \mid_{\mathcal{I}_-^+} = Q_0^-[\epsilon^-] \mid_{\mathcal{I}_-^-}.$$

 Q_0 is defined in terms of radial component of electric field.

At quantum level, S-matrix has to satisfy the Ward identity :

$$<$$
 out $| Q_0^+ S - S Q_0^- |$ in $> = 0$.

Asymptotic Conservation law

Classical conservation law :

$$Q_0^+[\epsilon^+] \mid_{\mathcal{I}_-^+} = Q_0^-[\epsilon^-] \mid_{\mathcal{I}_+^-}.$$

• At quantum level,

$$<$$
 out $| Q_0^+ S - S Q_0^- |$ in $> = 0$.

This Ward identity is equivalent to leading soft photon theorem. [He, Mitra, Porfyriadis and Strominger,1407.3789; 1703.05448]

Soft theorems

• In the soft limit, the amplitude factorises into lower point amplitude times a universal 'soft factor'.

Soft theorems

- In the soft limit, the amplitude factorises into lower point amplitude times a universal 'soft factor'.
- Soft expansion of loop amplitudes :

$$\lim_{\omega\to 0} \operatorname{Amp}_{n+1}(p_i, k) = \left[\frac{S_0}{\omega} + S_1 \log \omega + ...\right] \operatorname{Amp}_n(p_i).$$

 $k=\omega(1,\vec{q})$ is the soft momentum. n is number of hard particles in the scattering process. $(n+1)^{th}$ particle is the soft photon.

Soft theorems

- In the soft limit, the amplitude factorises into lower point amplitude times a universal 'soft factor'.
- Soft expansion of loop amplitudes :

$$\lim_{\omega\to 0} \operatorname{Amp}_{n+1}(p_i, k) = \left[\frac{S_0}{\omega} + S_1 \log \omega + ...\right] \operatorname{Amp}_n(p_i).$$

 $k = \omega(1, \vec{q})$ is the soft momentum. n is number of hard particles in the scattering process. $(n+1)^{th}$ particle is the soft photon.

Soft factors are universal.

$$S_0 = \sum_{i=1}^n e_i \frac{\varepsilon \cdot p_i}{p_i \cdot q}.$$

Subleading term for loop amplitudes

Soft expansion of loop amplitudes is given by :

$$\lim_{\omega\to 0} \operatorname{Amp}_{n+1}(p_i, k) = \left[\frac{S_0}{\omega} + S_1 \log \omega + ...\right] \operatorname{Amp}_n(p_i).$$

The Sahoo-Sen soft theorem (arxiv:1808.03288) is equivalent to a new asymptotic conservation law.

(Campiglia and Laddha, arxiv:1903.09133 and SB, arxiv:1912.10229.)

Subleading term for loop amplitudes

Soft expansion of loop amplitudes is given by:

$$\lim_{\omega \to 0} \operatorname{Amp}_{n+1}(p_i, k) = \left[\frac{S_0}{\omega} + S_1 \log \omega + ... \right] \operatorname{Amp}_n(p_i).$$

The Sahoo-Sen soft theorem (arxiv:1808.03288) is equivalent to a new asymptotic conservation law.

(Campiglia and Laddha, arxiv:1903.09133 and SB, arxiv:1912.10229.)

We will discuss the proof of above asymptotic conservation law in this talk.

Long range forces

- $\log \omega$ term in the soft expansion is related to the long range forces $(V \sim \frac{1}{r})$.
- Asymptotically particles are not free. They radiate and and this produces the $\log \omega$ term.
- We will incorporate the effect of long range forces on asymptotic dynamics.
- This leads to new asymptotic conservation laws.

Plan

(Based on arxiv:2007.03627)

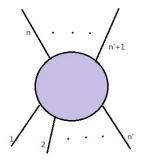
• Part 1 : New asymptotic conservation laws We discuss Q_m -conservation laws that are directly related to long range electromagnetic force.

Part 2: Classical soft theorems for m = 2,3
 We discuss the soft theorems related to above Q_m charges.

Part 1

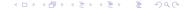
Asymptotic conservation laws for classical scattering.

Scattering process

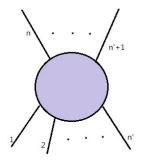


Let us consider scattering of charged particles where n' number of particles come in and interact in a finite region say a sphere of radius L around r=0. At the end, they produce (n-n') number of outgoing particles.

This interaction could be of any sort or of any strength.



Scattering process



For r > L, the particles are apart enough so that only possible interactions between them would be the long range forces.

• We will calculate $F_{\mu\nu}$ perturbatively in e and $\frac{1}{\tau}$.

- We will calculate $F_{\mu\nu}$ perturbatively in e and $\frac{1}{\tau}$.
- Let us first restrict ourselves to the leading order in coupling e, then we can ignore the effect of long range electromagetic interactions on the asymptotic trajectories.

- We will calculate $F_{\mu\nu}$ perturbatively in e and $\frac{1}{\tau}$.
- Let us first restrict ourselves to the leading order in coupling e, then we can ignore the effect of long range electromagetic interactions on the asymptotic trajectories.
- Hence an incoming particle has the trajectory :

$$x_i^{\mu} = [V_i^{\mu}\tau + d_i]\Theta(-T - \tau).$$

Similarly, an outgoing particle has the trajectory :

$$x_j^{\mu} = [V_j^{\mu} \tau + d_j] \Theta(\tau - T).$$

- We will calculate $F_{\mu\nu}$ perturbatively in e and $\frac{1}{\tau}$.
- Let us first restrict ourselves to the leading order in coupling e, then we can ignore the effect of long range electromagetic interactions on the asymptotic trajectories.
- Hence an incoming particle has the trajectory :

$$x_i^{\mu} = [V_i^{\mu}\tau + d_i]\Theta(-T - \tau).$$

Similarly, an outgoing particle has the trajectory :

$$x_j^{\mu} = [V_j^{\mu}\tau + d_j]\Theta(\tau - T).$$

$$j_{\sigma}(x') = \int d au \Big[\sum_{i=n'+1}^n e_i V_{i\sigma} \, \delta^4(x'-x_i) \, \Theta(\tau-T) + \, \operatorname{in} \, \Big].$$

$F_{\mu u}$ at $\mathcal{O}(e)$

ullet We get at \mathcal{I}^+ :

$$|F_{\mu\nu}|_{\mathcal{I}^+_-}\sim \sum_{\substack{m,n\\m< n}}\frac{u^m}{r^n}+\cdots.$$

'...' represent terms that are atleast exponentially suppressed.

$$F_{\mu
u}$$
 at $\mathcal{O}(e)$

ullet We get at \mathcal{I}^+ :

$$|F_{\mu\nu}|_{\mathcal{I}^+_-} \sim \sum_{\substack{m,n \ m < n}} \frac{u^m}{r^n} + \cdots$$

'...' represent terms that are atleast exponentially suppressed.

• In particular, we have :

$$|F_{rA}^2|_{\mathcal{I}^+_-} = u |F_{rA}^{(2,-1)}| + u^0 |F_{rA}^{(2,0)}| + \cdots$$

A denotes S^2 co-ordinates.

The coefficients are a function of \hat{x} .

$$F_{\mu
u}$$
 at $\mathcal{O}(e)$

ullet We get at \mathcal{I}^+ :

$$|F_{\mu\nu}|_{\mathcal{I}^+_-} \sim \sum_{\substack{m,n \ m < n}} \frac{u^m}{r^n} + \cdots.$$

'...' represent terms that are atleast exponentially suppressed.

• In particular, we have :

$$|F_{rA}^2|_{\mathcal{I}_{-}^+} = u |F_{rA}^{(2,-1)}| + u^0 |F_{rA}^{(2,0)}| + \cdots$$

A denotes S^2 co-ordinates.

The coefficients are a function of \hat{x} .

• Long range forces lead to new logarithmic terms in field strength.

$$m_i \frac{\partial^2 x_i^{\mu}}{\partial \tau^2} = e_i F^{\mu\nu}(\tau) V_{i\nu}.$$

$$m_i \frac{\partial^2 x_i^{\mu}}{\partial \tau^2} = e_i F^{\mu\nu}(\tau) V_{i\nu}.$$

Substitute $\mathcal{O}(e)$ solution of $F^{\mu\nu}$ in above equation to get

$$m_i \frac{\partial^2 x_i^{\mu}}{\partial \tau^2} = \mathcal{O}(\frac{e^2}{\tau^2}).$$

Hence we get:

$$x_i^{\mu} = V_i^{\mu} \ \tau + c_i^{\mu} \log \tau + d_i + \mathcal{O}(\frac{1}{\tau}).$$

We have :

$$x_i^\mu = V_i^\mu \ au + c_i^\mu \log au + d_i + \mathcal{O}(\frac{1}{ au}).$$

$$c_i^\mu = -rac{1}{4\pi} \sum_{\substack{j=n'+1,\ j
eq i}}^n e_i e_j rac{p_i.p_j}{[(p_i.p_j)^2 - m_i^2 m_j^2]^{3/2}}.$$

We have:

$$x_i^\mu = V_i^\mu \ au + c_i^\mu \log au + d_i + \mathcal{O}(\frac{1}{ au}).$$

$$c_i^{\mu} = -\frac{1}{4\pi} \sum_{\substack{j=n'+1, \\ j \neq i}}^{n} e_i e_j \frac{p_i . p_j \ m_j^2 p_i^{\mu} + m_i^2 m_j^2 p_j^{\mu}}{[(p_i . p_j)^2 - m_i^2 m_j^2]^{3/2}}.$$

- Above expression represents effect of other particles j on the i^{th} particle.
- \bullet c_i 's for an outgoing particle includes contribution only from outgoing particles.

$\mathcal{O}(e^3)$ fall offs in the field strength

• Using $\Box A_{\mu} = -j_{\mu}$,

$$A_{\sigma}(x) = \frac{1}{2\pi} \int d au \, \delta(\,[x-x'(au)]^2) \, j_{\sigma}(au).$$

Now j_{σ} includes $\mathcal{O}(e^3)$ terms.

• The fields admit new fall offs :

$$F_{rA}^2|_{\mathcal{I}_{-}^+} = u F_{rA}^{(2,-1)} + \log u F_{rA}^{(2,\log)} + u^0 F_{rA}^{(2,0)} + \cdots$$

$\mathcal{O}(e^3)$ fall offs in the field strength

At future :

$$F_{rA}|_{u\to-\infty} = \frac{1}{r^2} \left[u \ F_{rA}^{(2,-1)} + \log u \ F_{rA}^{(2,\log)} + \ldots \right] + \mathcal{O}(\frac{1}{r^3}) \ .$$
 (1)

We repeat the similar calculation at past null infinity (4).

$$F_{rA}|_{v\to\infty} = \frac{\log r}{r^2} \ v^0 \ F_{rA}^{(\log,0)} + \mathcal{O}(\frac{1}{r^2}) \ .$$

$\mathcal{O}(e^3)$ fall offs in the field strength

At future :

$$F_{rA}|_{u\to-\infty} = \frac{1}{r^2} \left[u \ F_{rA}^{(2,-1)} + \log u \ F_{rA}^{(2,\log)} + \ldots \right] + \mathcal{O}(\frac{1}{r^3}) \ .$$
 (1)

• We repeat the similar calculation at past null infinity (4).

$$F_{rA}|_{v\to\infty} = \frac{\log r}{r^2} \ v^0 \ F_{rA}^{(\log,0)} + \mathcal{O}(\frac{1}{r^2}) \ .$$

We show that :

$$F_{rA}^{(2,\log)}(\hat{x})\mid_{\mathcal{I}_{-}^{+}} = F_{rA}^{(\log,0)}(-\hat{x})\mid_{\mathcal{I}_{-}^{-}}.$$

This law was suggested by Campiglia and Laddha. We proved it. This is the m=1 conservation law.

- Asymptotically particles accelerate under long range force and radiate.
- This radiation backreacts on the particles and corrects the trajectory of matter particles.

- Asymptotically particles accelerate under long range force and radiate.
- This radiation backreacts on the particles and corrects the trajectory of matter particles.

$$m_i \frac{\partial^2 x_i^{\mu}}{\partial \tau^2} = e_i F^{\mu\nu}(\tau) V_{i\nu}^{\text{cor}}(\tau).$$

Substituting $F_{\mu\nu}\sim \mathcal{O}(e^3)$:

$$m_i \frac{\partial^2 x_i^{\mu}}{\partial \tau^2} \sim \frac{e^2}{\tau^2} + e^4 \frac{\log \tau}{\tau^3} + \cdots$$

Thus, asymptotic trajectories of the particles are corrected to :

$$x_i^{\mu} = V_i^{\mu} \ \tau + c_i^{\mu} \log \tau + d_i + f_{i\sigma} \frac{\log \tau}{\tau}.$$
 (2)

(5)

$\mathcal{O}(e^5)$ fall offs in the field strength

• Including the $\mathcal{O}(e^5)$ terms around future null infinity :

$$F_{rA}^3|_{u\to-\infty} = u^2 \ F_{rA}^{(3,-2)} \ + u \log u \ F_{rA}^{(3,-1)} + (\log u)^2 \ F_{rA}^{(3,\log^2)} \ + \dots \ .$$

$\mathcal{O}(e^5)$ fall offs in the field strength

ullet Including the $\mathcal{O}(e^5)$ terms around future null infinity :

$$F_{rA}^3|_{u\to-\infty} = u^2 F_{rA}^{(3,-2)} + u \log u F_{rA}^{(3,-1)} + (\log u)^2 F_{rA}^{(3,\log^2)} + \dots$$

• Expansion around the past null infinity is given by :

$$|F_{rA}|_{v\to\infty} = \frac{\log r}{r^2} v^0 F_{rA}^{(\log,0)} + \frac{(\log r)^2}{r^3} v^0 F_{rA}^{(\log^2,0)} + \mathcal{O}(\frac{1}{r^2}).$$

$\mathcal{O}(e^5)$ fall offs in the field strength

• Including the $\mathcal{O}(e^5)$ terms around future null infinity :

$$F_{rA}^3|_{u\to-\infty} = u^2 \; F_{rA}^{(3,-2)} \; + u \log u \; F_{rA}^{(3,-1)} + (\log u)^2 \; F_{rA}^{(3,\log^2)} \; + \dots \; .$$

• Expansion around the past null infinity is given by :

$$|F_{rA}|_{v\to\infty} = \frac{\log r}{r^2} v^0 F_{rA}^{(\log,0)} + \frac{(\log r)^2}{r^3} v^0 F_{rA}^{(\log^2,0)} + \mathcal{O}(\frac{1}{r^2}).$$

• We proved following $\mathcal{O}(e^5)$ conservation law :

$$F_{rA}^{(3,\log^2)}(\hat{x})|_{\mathcal{I}_{-}^{+}} = F_{rA}^{(\log^2,0)}(-\hat{x})|_{\mathcal{I}_{+}^{-}}.$$

This is the m=2 conservation law.

Summary so far

We have established conservation laws for following modes of F_{rA} :

$$\mathcal{O}(e^3): \frac{\log u}{r^2} \text{ and } \frac{\log r}{r^2}.$$

$$\mathcal{O}(e^5)$$
: $\frac{(\log u)^2}{r^3}$ and $\frac{(\log r)^2}{r^3}$.

m^{th} order asymptotic conservation laws

• We expect these conservation laws to exist for all m-modes of F_{rA} :

$$\mathcal{O}(e^{2m+1}): \frac{(\log u)^m}{r^{m+1}} \text{ and } \frac{(\log r)^m}{r^{m+1}}.$$

Proved for m = 1, 2, 3.

Concluding Part 1

• Classical theory admits a set of conservation laws (m = 1, 2, 3):

$$Q_m^+[Y_m^+] \mid_{\mathcal{I}_-^+} = Q_m^-[Y_m^-] \mid_{\mathcal{I}_+^-}.$$

 Strominger and his colloborators have established a correspondence between asymptotic conservation laws and soft theorems.

Concluding Part 1

• Classical theory admits a set of conservation laws (m = 1, 2, 3):

$$Q_m^+[Y_m^+] \mid_{\mathcal{I}_-^+} = Q_m^-[Y_m^-] \mid_{\mathcal{I}_+^-}.$$

- Strominger and his colloborators have established a correspondence between asymptotic conservation laws and soft theorems.
- As we discussed earlier, Q_1 -conservation law is equivalent to the Sahoo-Sen $\log \omega$ soft theorem.

$$\left[\begin{array}{c}Q_1, S\end{array}\right]=0$$

(Campiglia and Laddha, arxiv:1903.09133; SB, arxiv:1912.10229.)

For m > 1

• It can be argued that Q_m -conservation laws are related to following terms in soft expansion of loop amplitudes :

$$\lim_{\omega \to 0} \mathsf{Amp}_{n+1}(p_i, k) = \Big[\frac{S_0}{\omega} + \sum_m S_m \ \omega^{m-1} \log \omega^m + \ldots \Big].$$

For m > 1

• It can be argued that Q_m -conservation laws are related to following terms in soft expansion of loop amplitudes :

$$\lim_{\omega \to 0} \mathsf{Amp}_{n+1}(p_i, k) = \Big[\frac{S_0}{\omega} + \sum_m S_m \ \omega^{m-1} \log \omega^m + \ldots \Big].$$

- These m^{th} level soft photon theorems for quantum amplitudes have not been explored for m > 1.
- Let us discuss the classical version of soft theorems for m = 2,3.

Part 2

Classical Soft theorems.

Classical Soft theorems

 Laddha and Sen (arXiv:1801.07719) have discussed the classical limit of soft theorems.

$$\lim_{\omega \to 0} \mathsf{Amp}_{n+1}(p_i, k) = \Big[\frac{S_0}{\omega} + S_1 \log \omega + ...\Big] \mathsf{Amp}_n(p_i).$$

 Soft theorems control the classical radiative field in low energy limit. Classical limit of soft theorems:

$$\lim_{\omega \to 0} \epsilon^{\mu} \tilde{A}_{\mu}(\omega) = \left[\frac{S_0}{\omega} + S_1^{\mathsf{class}} \log \omega + \ldots \right].$$

• S_1^{class} was derived classically by Saha, Sahoo and Sen (arXiv:1912.06413).

Classical Soft theorems

Next goal: derive the subsubleading universal terms.

$$\begin{split} &\lim_{\omega \to 0} \epsilon^{\mu} \tilde{A}_{\mu}(\omega) \\ &= &\left[\frac{S_0}{\omega} + S_1^{\text{class}} \log \omega + S_2^{\text{class}} \omega (\log \omega)^2 + S_3^{\text{class}} \omega^2 (\log \omega)^3 + \ldots \right]. \end{split}$$

Late time radiative field

Steps:

- We consider a generic classical scattering process of charged bodies we had discussed earlier.
- We calculate the radiative component of the electromagnetic field emitted at late times.
- This will get related to soft field via a Fourier transform.

Late time radiative field

• Let us derive the universal terms that appear upto $\mathcal{O}(e^5)$. Using $\Box A_\mu = -j_\mu$,

$$A_{\sigma}(x) = \frac{1}{2\pi} \int d\tau \, \delta([x - x'(\tau)]^2) j_{\sigma}(\tau).$$

Late time radiative field

• Let us derive the universal terms that appear upto $\mathcal{O}(e^5)$. Using $\Box A_\mu = -j_\mu$,

$$A_{\sigma}(x) = \frac{1}{2\pi} \int d\tau \, \delta(\, [x - x'(\tau)]^2) \, j_{\sigma}(\tau).$$

• We need to retain the subsubleading terms in asymptotic trajectories of the particles (5):

$$x_{i}^{\prime \mu} = V_{i}^{\mu} \tau + c_{i}^{\mu} \log \tau + d_{i} + f_{i\sigma} \frac{\log \tau}{\tau}.$$
 (3)

so that j_{σ} includes $\mathcal{O}(e^5)$ terms.

$$A_{\mu}|_{\mathcal{I}^{+}} = rac{1}{4\pi r} \left[\ a_{\mu}^{\pm} u^{0} \ + \ rac{[b_{\mu}^{(0)}]^{\pm}}{u} \ + \ [b_{\mu}^{(1)}]^{\pm} rac{\log u}{u^{2}} \
ight] + ..., \quad u o \pm \infty.$$

$$A_{\mu}|_{\mathcal{I}^{+}} = rac{1}{4\pi r} \Big[\ a_{\mu}^{\pm} u^{0} \ + \ rac{[b_{\mu}^{(0)}]^{\pm}}{u} \ + \ [b_{\mu}^{(1)}]^{\pm} rac{\log u}{u^{2}} \ \Big] + ..., \quad u o \pm \infty.$$

• u^0 term is the 'memory term'. Rederiving the leading soft factor:

$$\begin{split} a_{\mu}^{+} &= \sum_{\text{out}} \frac{e_{i} p_{i\mu}}{q_{\cdot} p_{i}} \\ a_{\mu}^{-} &= -\sum_{\text{in}} \frac{e_{i} p_{i\mu}}{q_{\cdot} p_{i}} \\ S_{0} &= \int_{\mathcal{I}^{+}} du \ \partial_{u} \ \epsilon^{\mu} A_{\mu} = \sum_{i} e_{i} \frac{\epsilon_{\cdot} p_{i}}{q_{\cdot} p_{i}} \end{split}$$

• The next term is the tail term discussed by Saha, Sahoo, Sen. It is related to the m=1 classical soft theorem via Fourier transform.

$$A_{\mu}|_{\mathcal{I}^{+}} = rac{1}{4\pi r} \left[a_{\mu}^{\pm} u^{0} + rac{[b_{\mu}^{(0)}]^{\pm}}{u} + [b_{\mu}^{(1)}]^{\pm} rac{\log u}{u^{2}}
ight] + ..., \quad u o \pm \infty.$$

We derive the subsubleading term.

$$[b_{\sigma}^{(1)}]^{+} = \sum_{\text{out}} e_{i} \left[q.c_{i} \ c_{i\sigma} - p_{i\sigma} \frac{(q.c_{i})^{2}}{q.p_{i}} + \frac{p_{i\sigma}}{m_{i}} f_{i}.q - \frac{q.p_{i}}{m_{i}} f_{i\sigma} \right]$$
$$[b_{\sigma}^{(1)}]^{-} = \sum_{\text{in}} e_{i} \left[q.c_{i} \ c_{i\sigma} - p_{i\sigma} \frac{(q.c_{i})^{2}}{q.p_{i}} + \frac{p_{i\sigma}}{m_{i}} f_{i}.q - \frac{q.p_{i}}{m_{i}} f_{i\sigma} \right]$$

$$A_{\mu}|_{\mathcal{I}^{+}} = \frac{1}{4\pi r} \left[a_{\mu}^{\pm} u^{0} + \frac{[b_{\mu}^{(0)}]^{\pm}}{u} + [b_{\mu}^{(1)}]^{\pm} \frac{\log u}{u^{2}} \right] + ..., \quad u \to \pm \infty.$$

The subsubleading term is interesting because

- It is universal: completely independent of the details of the scattering process.
- It is related to the Q_2 -conservation law, hence tied to a soft theorem.

Classical soft theorem for m = 2

$$ilde{A}_{\mu}(\omega) = rac{e^{i\omega r}}{4\pi i r} \left[egin{array}{c} rac{1}{\omega} \ S_0 \ + S_1^{ ext{class}} \ \log \omega + S_2^{ ext{class}} \ \omega (\log \omega)^2 + ... \end{array}
ight] ext{ as } \omega o 0.$$

Classical soft theorem for m = 2

$$ilde{A}_{\mu}(\omega) = rac{e^{i\omega r}}{4\pi i r} \Big[\; rac{1}{\omega} \; S_0 \; + S_1^{ ext{class}} \; \log \omega + S_2^{ ext{class}} \; \omega (\log \omega)^2 + ... \Big] \; ext{as} \; \omega o 0.$$

The coefficient of $\omega(\log \omega)^2$:

$$S_2^{\mathsf{class}} = -\frac{1}{2} \sum_{i=1}^n e_i \Big[q.c_i \; \big[p_i.\epsilon \frac{q.c_i}{p_i.q} - c_i.\epsilon \big] - \epsilon_\mu q_\nu \; \big[p_i^\mu f_i^\nu - p_i^\nu f_i^\mu \big] \; \Big].$$

recalling (5)

$$x_i^{\mu} = V_i^{\mu} \ \tau + c_i^{\mu} \log \tau + d_i + f_{i\sigma} \frac{\log \tau}{\tau}.$$

Classical soft theorem for m = 2

$$ilde{A}_{\mu}(\omega) = rac{e^{\imath \omega r}}{4\pi i r} \Big[\; rac{1}{\omega} \; S_0 \; + S_1^{ ext{class}} \; \log \omega + S_2^{ ext{class}} \; \omega (\log \omega)^2 + ... \Big] \; ext{as} \; \omega o 0.$$

The coefficient of $\omega(\log \omega)^2$:

$$S_2^{\mathsf{class}} = -\frac{1}{2} \sum_{i=1}^n e_i \left[q.c_i \left[p_i.\epsilon \frac{q.c_i}{p_i.q} - c_i.\epsilon \right] - \epsilon_{\mu} q_{\nu} \left[p_i^{\mu} f_i^{\nu} - p_i^{\nu} f_i^{\mu} \right] \right].$$

recalling (5)

$$x_i^{\mu} = V_i^{\mu} \tau + c_i^{\mu} \log \tau + d_i + f_{i\sigma} \frac{\log \tau}{\tau}.$$

• This term is $\mathcal{O}(e^5)$, hence in the quantum amplitudes it will appear at 2-loop order.

Higher order universal terms in the soft radiative field

- We carry out similar calculations at higher orders in e.
- The asymptotic part of the trajectory admits following universal corrections that are governed by the long range electromagnetic force. (5)

$$x_i^{\sigma} = V_{i\sigma}\tau + c_{i\sigma}\log\tau + d_{i\sigma} + \sum_{m=1}^{\infty} (\eta_i)^m f_{i\sigma}^{(m)} \frac{(\log\tau)^m}{\tau^m} + \dots$$

We will find the resultant radiative field.

Classical soft theorems

• We show for m = 2, 3, 4:

$$\tilde{A}_{\mu}|_{\omega \to 0} = \frac{e^{i\omega r}}{4\pi i r} \left[\frac{1}{\omega} S_0 + \sum_{m=1}^{\infty} S_m^{\text{class}} \omega^{m-1} (\log \omega)^m + \ldots \right].$$

The form of S_m^{class} is given by :

$$S_{m}^{\text{class}} = \frac{(i)^{m}}{m!} \sum_{i=1}^{n} \left[e_{i} \left[\frac{\epsilon \cdot p_{i}}{q \cdot p_{i}} (q \cdot c_{i}) - \epsilon \cdot c_{i} \right] (q \cdot c_{i})^{m-1} + \epsilon_{\mu} q_{\nu_{1}} ... q_{\nu_{m-1}} \mathcal{F}_{i}^{\mu \nu_{1} ... \nu_{m-1}} \right].$$

$$\mathcal{F}_{i\mu\nu_1\cdots\nu_m} = m \sum_{m'=2}^{m+1} e_i c_{i\nu_1} \cdots c_{i\nu_{m+1-m'}} \frac{p_{i\nu_{m+2-m'}}}{m_i} \cdots \frac{1}{m_i} p_{i[\nu_m} f_{i\mu]}^{(m'-1)}.$$

Conclusion

- A new set of Q_m -conservation laws (m = 1, 2, 3). Charges are $\mathcal{O}(e^{2m+1})$ and tied to long range forces.
- Expected to be related to soft theorems for loop amplitudes.

Conclusion

- A new set of Q_m -conservation laws (m = 1, 2, 3). Charges are $\mathcal{O}(e^{2m+1})$ and tied to long range forces.
- Expected to be related to soft theorems for loop amplitudes.
- We derived these soft theorems for classical field for m = 2, 3, 4.

Conclusion

- A new set of Q_m -conservation laws (m = 1, 2, 3). Charges are $\mathcal{O}(e^{2m+1})$ and tied to long range forces.
- Expected to be related to soft theorems for loop amplitudes.
- We derived these soft theorems for classical field for m = 2, 3, 4.
- There is compelling evidence that this structure holds for all m's. These interesting questions need to be explored.

THANK YOU!

Comparison between future and past solutions (1)

Using $\Box A_{\mu} = -j_{\mu}$,

$$A_{\sigma}(x) = \frac{1}{2\pi} \int d\tau \, \delta((x - x'(\tau))^2) \, j_{\sigma}(\tau).$$

• The retarded root of the delta function is

$$\tau_0 = -V_i.(x-d_i) - \left[(V_i.x - V_i.d_i)^2 + (x-d_i)^2 \right]^{1/2}.$$
 (4)

Around future :

$$|\tau_0|_{\mathcal{I}^+}=\frac{u}{(V_i^0-\hat{x}.V_i)}+\mathcal{O}(\frac{1}{r}).$$

• Around past :

$$\tau_0|_{\mathcal{I}^-} = -2r \left(V_i^0 + \hat{x}.V_i \right) + \mathcal{O}(r^0).$$

Asymptotic dynamics including subsubleading term

Thus, asymptotic trajectories of the particles are corrected to :

$$x_i^{\mu} = V_i^{\mu} \tau + c_i^{\mu} \log \tau + d_i + f_{i\sigma} \frac{\log \tau}{\tau},$$

where

$$c_i^\mu = -rac{1}{4\pi} \sum_{\substack{j=n'+1,\ i
eq i}}^n e_i e_j rac{p_i.p_j}{[(p_i.p_j)^2 - m_i^2 m_j^2]^{3/2}}.$$

$$f_{i}^{\mu} = -\sum_{\substack{i=n'+1,\\i\neq j}}^{n} m_{i} m_{j}^{2} \frac{Q_{i} Q_{j}}{2} \left[3m_{i} m_{j} p_{j}.c_{i} \frac{(p_{i}.p_{j} p_{i}^{\mu} + m_{i}^{2} p_{j}^{\mu})}{[(p_{i}.p_{j})^{2} - m_{i}^{2} m_{j}^{2}]^{5/2}} + \frac{[p_{i}.p_{j} c_{i}^{\mu} - (p_{i}.p_{j} c_{j}^{\mu} - p_{j}.c_{i} p_{j}^{\mu})]}{[(p_{i}.p_{j})^{2} - m_{i}^{2} m_{j}^{2}]^{3/2}} \right].$$
(5)

$Log \omega$ soft theorem

• S_{log} has 2 parts. A part that survives in the classical limit.

$$S_{log}^{class} = \frac{i}{4\pi} \sum_{\substack{\eta_i \eta_j = 1 \\ i \neq j}} e_i^2 e_j \frac{\epsilon^\mu q^\nu}{\left(q \cdot p_i\right)} \ m_i^2 m_j^2 \ p_{i[\mu} \partial_{i\nu]} \ \frac{p_i \cdot p_j}{\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2}}$$

- This term appears in the soft radiation emitted in a classical scattering.
- Important to note that this term vanishes for massless particles.

$Log \omega$ soft theorem

• The other part is purely quantum and does not appear in classical physics.

$$S_{ ext{log}}^{ ext{quan}} = -rac{1}{8\pi^2} \sum_{i
eq j} e_i^2 e_j rac{\epsilon^\mu q^
u}{(q.p_i)} \; p_{i[\mu} \partial_{i
u]} \; rac{f(p_i,p_j)}{\sqrt{(p_i.p_j)^2 - m_i^2 m_j^2}}$$

• The exact form of this expression is not important for us. Interesting to note the relative factor of i between two terms.