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Asymptotic Conservation laws

Asymptotic conservation laws :

Q+[ε+] | I+− = Q−[ε−] | I−+ .

ε+(x̂) = ε−(−x̂).

I+− is the u → −∞ sphere of I+.
I−+ is the v →∞ sphere of I−.



Asymptotic Conservation law

• Classical conservation law :

Q+
0 [ε+] | I+− = Q−0 [ε−] | I−+ .

Q0 is defined in terms of radial component of electric field.

• At quantum level, S-matrix has to satisfy the Ward identity :

< out| Q+
0 S − S Q−0 |in > = 0.



Asymptotic Conservation law

• Classical conservation law :

Q+
0 [ε+] | I+− = Q−0 [ε−] | I−+ .

• At quantum level,

< out| Q+
0 S − S Q−0 |in > = 0.

This Ward identity is equivalent to leading soft photon theorem.
[He, Mitra, Porfyriadis and Strominger,1407.3789; 1703.05448]



Soft theorems

• In the soft limit, the amplitude factorises into lower point
amplitude times a universal ’soft factor’.

• Soft expansion of loop amplitudes :

lim
ω→0

Ampn+1(pi , k) =
[S0
ω

+ S1 logω + ...
]
Ampn(pi ).

k = ω(1, ~q) is the soft momentum.
n is number of hard particles in the scattering process.
(n + 1)th particle is the soft photon.

• Soft factors are universal.

S0 =
n∑

i=1

ei
ε.pi
pi .q

.
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Subleading term for loop amplitudes

Soft expansion of loop amplitudes is given by :

lim
ω→0

Ampn+1(pi , k) =
[S0
ω

+ S1 logω + ...
]
Ampn(pi ).

The Sahoo-Sen soft theorem (arxiv:1808.03288) is equivalent to a
new asymptotic conservation law.
(Campiglia and Laddha, arxiv:1903.09133 and SB, arxiv:1912.10229.)

We will discuss the proof of above asymptotic conservation law in
this talk.
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Long range forces

• logω term in the soft expansion is related to the long range
forces (V ∼ 1

r ).

• Asymptotically particles are not free. They radiate and and
this produces the logω term.

• We will incorporate the effect of long range forces on
asymptotic dynamics.

• This leads to new asymptotic conservation laws.



Plan

(Based on arxiv:2007.03627)

• Part 1 : New asymptotic conservation laws

We discuss Qm-conservation laws that are directly related to
long range electromagnetic force.

• Part 2 : Classical soft theorems for m = 2, 3

We discuss the soft theorems related to above Qm charges.



Part 1

Asymptotic conservation laws for classical scattering.



Scattering process

Let us consider scattering of charged particles where n′ number of
particles come in and interact in a finite region say a sphere of
radius L around r = 0. At the end, they produce (n − n′) number
of outgoing particles.
This interaction could be of any sort or of any strength.



Scattering process

For r > L, the particles are apart enough so that only possible
interactions between them would be the long range forces.



Asymtotic dynamics at leading order

• We will calculate Fµν perturbatively in e and
1
τ .

• Let us first restrict ourselves to the leading order in coupling
e, then we can ignore the effect of long range electromagetic
interactions on the asymptotic trajectories.

• Hence an incoming particle has the trajectory :

xµi = [V µ
i τ + di ]Θ(−T − τ).

Similarly, an outgoing particle has the trajectory :

xµj = [V µ
j τ + dj ]Θ(τ − T ).

jσ(x ′) =

∫
dτ
[ n∑
i=n′+1

eiViσ δ
4(x ′ − xi ) Θ(τ − T ) + in

]
.
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Fµν at O(e)

• We get at I+ :

Fµν |I+− ∼
∑
m,n
m<n

um

rn
+ · · · .

’· · · ’ represent terms that are atleast exponentially suppressed.

• In particular, we have :

F 2
rA|I+− = u F

(2,−1)
rA + u0 F

(2,0)
rA + · · · .

A denotes S2 co-ordinates.
The coefficients are a function of x̂ .

• Long range forces lead to new logarithmic terms in field strength.
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Asymptotic dynamics including subleading term

mi
∂2xµi
∂τ2

= ei F
µν(τ) Viν .

Substitute O(e) solution of Fµν in above equation to get

mi
∂2xµi
∂τ2

= O(
e2

τ2
).

Hence we get :

xµi = V µ
i τ + cµi log τ + di +O(

1

τ
).
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Asymptotic dynamics including subleading term

We have :

xµi = V µ
i τ + cµi log τ + di +O(

1

τ
).

cµi = − 1

4π

n∑
j=n′+1,

j 6=i

eiej
pi .pj m

2
j p
µ
i + m2

i m
2
j p
µ
j

[(pi .pj)2 −m2
i m

2
j ]3/2

.

• Above expression represents effect of other particles j on the i th

particle.
• ci ’s for an outgoing particle includes contribution only from
outgoing particles.
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O(e3) fall offs in the field strength

• Using �Aµ = −jµ,

Aσ(x) =
1

2π

∫
dτ δ( [x − x ′(τ)]2) jσ(τ).

Now jσ includes O(e3) terms.

• The fields admit new fall offs :

F 2
rA|I+− = u F

(2,−1)
rA + log u F

(2,log)
rA + u0 F

(2,0)
rA + · · · .



O(e3) fall offs in the field strength

• At future :

FrA|u→−∞ =
1

r2

[
u F

(2,−1)
rA + log u F

(2,log)
rA + ...

]
+O(

1

r3
) .

(1)

• We repeat the similar calculation at past null infinity (4).

FrA|v→∞ =
log r

r2
v0 F

(log,0)
rA +O(

1

r2
) .

• We show that :

F
(2,log)
rA (x̂) | I+− = F

(log,0)
rA (−x̂) | I−+ .

This law was suggested by Campiglia and Laddha. We proved
it. This is the m = 1 conservation law.



O(e3) fall offs in the field strength

• At future :

FrA|u→−∞ =
1

r2

[
u F

(2,−1)
rA + log u F

(2,log)
rA + ...

]
+O(

1

r3
) .

(1)

• We repeat the similar calculation at past null infinity (4).

FrA|v→∞ =
log r

r2
v0 F

(log,0)
rA +O(

1

r2
) .

• We show that :

F
(2,log)
rA (x̂) | I+− = F

(log,0)
rA (−x̂) | I−+ .

This law was suggested by Campiglia and Laddha. We proved
it. This is the m = 1 conservation law.



Asymptotic dynamics including subsubleading term

• Asymptotically particles accelerate under long range force and
radiate.

• This radiation backreacts on the particles and corrects the
trajectory of matter particles.

mi
∂2xµi
∂τ2

= ei F
µν(τ) V cor

iν (τ).

Substituting Fµν ∼ O(e3) :

mi
∂2xµi
∂τ2

∼ e2

τ2
+ e4

log τ

τ3
+ · · · .

Thus, asymptotic trajectories of the particles are corrected to :

xµi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
. (2)

(5)
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O(e5) fall offs in the field strength

• Including the O(e5) terms around future null infinity :

F 3
rA|u→−∞ = u2 F

(3,−2)
rA + u log u F

(3,−1)
rA + (log u)2 F

(3,log2)
rA + ... .

• Expansion around the past null infinity is given by :

FrA|v→∞ =
log r

r2
v0 F

(log,0)
rA +

(log r)2

r3
v0 F

(log2,0)
rA +O(

1

r2
) .

• We proved following O(e5) conservation law :

F
(3,log2)
rA (x̂)|I+− = F

(log2,0)
rA (−x̂)|I−+ .

This is the m = 2 conservation law.
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Summary so far

We have established conservation laws for following modes of FrA :

O(e3) :
log u

r2
and

log r

r2
.

O(e5) :
(log u)2

r3
and

(log r)2

r3
.



mth order asymptotic conservation laws

• We expect these conservation laws to exist for all m-modes of
FrA :

O(e2m+1) :
(log u)m

rm+1
and

(log r)m

rm+1
.

Proved for m = 1, 2, 3.



Concluding Part 1

• Classical theory admits a set of conservation laws (m = 1, 2, 3) :

Q+
m [Y+

m ] | I+− = Q−m [Y−m ] | I−+ .

• Strominger and his colloborators have established a
correspondence between asymptotic conservation laws and soft
theorems.

• As we discussed earlier, Q1-conservation law is equivalent to the
Sahoo-Sen logω soft theorem.[

Q1 , S
]

= 0

(Campiglia and Laddha, arxiv:1903.09133; SB, arxiv:1912.10229.)
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For m > 1

• It can be argued that Qm-conservation laws are related to
following terms in soft expansion of loop amplitudes :

lim
ω→0

Ampn+1(pi , k) =
[S0
ω

+
∑
m

Sm ωm−1 logωm + ...
]
.

• These mth level soft photon theorems for quantum amplitudes
have not been explored for m > 1.

• Let us discuss the classical version of soft theorems for
m = 2, 3.
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Part 2

Classical Soft theorems.



Classical Soft theorems

• Laddha and Sen (arXiv:1801.07719) have discussed the
classical limit of soft theorems.

lim
ω→0

Ampn+1(pi , k) =
[S0
ω

+ S1 logω + ...
]
Ampn(pi ).

• Soft theorems control the classical radiative field in low energy
limit. Classical limit of soft theorems :

lim
ω→0

εµÃµ(ω) =
[S0
ω

+ Sclass
1 logω + ...

]
.

• Sclass
1 was derived classically by Saha, Sahoo and Sen

(arXiv:1912.06413).



Classical Soft theorems

Next goal : derive the subsubleading universal terms.

lim
ω→0

εµÃµ(ω)

=
[S0
ω

+ Sclass
1 logω + Sclass

2 ω(logω)2 + Sclass
3 ω2(logω)3 + ...

]
.



Late time radiative field

Steps :

• We consider a generic classical scattering process of charged
bodies we had discussed earlier.

• We calculate the radiative component of the electromagnetic
field emitted at late times.

• This will get related to soft field via a Fourier transform.



Late time radiative field

• Let us derive the universal terms that appear upto O(e5).

Using �Aµ = −jµ,

Aσ(x) =
1

2π

∫
dτ δ( [x − x ′(τ)]2) jσ(τ).

• We need to retain the subsubleading terms in asymptotic
trajectories of the particles (5):

x ′µi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
. (3)

so that jσ includes O(e5) terms.
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Universal terms in late time radiative field upto O(e5)

Aµ|I+ =
1

4πr

[
a±µ u

0 +
[b

(0)
µ ]±

u
+ [b(1)µ ]±

log u

u2

]
+ ..., u → ±∞.

• u0 term is the ’memory term’. Rederiving the leading soft
factor :

a+µ =
∑
out

eipiµ
q.pi

a−µ = −
∑
in

eipiµ
q.pi

S0 =

∫
I+

du ∂u ε
µAµ =

∑
i

ei
ε.pi
q.pi

• The next term is the tail term discussed by Saha, Sahoo, Sen.
It is related to the m = 1 classical soft theorem via Fourier
transform.
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Universal terms in late time radiative field upto O(e5)

Aµ|I+ =
1

4πr

[
a±µ u

0 +
[b

(0)
µ ]±

u
+ [b(1)µ ]±

log u

u2

]
+ ..., u → ±∞.

We derive the subsubleading term.

[b(1)σ ]+ =
∑
out

ei
[
q.ci ciσ − piσ

(q.ci )
2

q.pi
+

piσ
mi

fi .q −
q.pi
mi

fiσ
]

[b(1)σ ]− =
∑
in

ei
[
q.ci ciσ − piσ

(q.ci )
2

q.pi
+

piσ
mi

fi .q −
q.pi
mi

fiσ
]



Universal terms in late time radiative field upto O(e5)

Aµ|I+ =
1

4πr

[
a±µ u

0 +
[b

(0)
µ ]±

u
+ [b(1)µ ]±

log u

u2

]
+ ..., u → ±∞.

The subsubleading term is interesting because

• It is universal : completely independent of the details of the
scattering process.

• It is related to the Q2-conservation law, hence tied to a soft
theorem.



Classical soft theorem for m = 2

Ãµ(ω) =
e iωr

4πir

[ 1

ω
S0 + Sclass

1 logω + Sclass
2 ω(logω)2 + ...

]
as ω → 0.

The coefficient of ω(logω)2 :

Sclass
2 = −1

2

n∑
i=1

ei

[
q.ci

[
pi .ε

q.ci
pi .q
− ci .ε

]
− εµqν [pµi f

ν
i − pνi f

µ
i ]
]
.

recalling (5)

xµi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
.

• This term is O(e5), hence in the quantum amplitudes it will
appear at 2-loop order.
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Higher order universal terms in the soft radiative field

• We carry out similar calculations at higher orders in e.

• The asymptotic part of the trajectory admits following universal
corrections that are governed by the long range electromagnetic
force. (5)

xσi = Viστ + ciσ log τ + diσ +
∞∑

m=1

(ηi )
mf

(m)
iσ

(log τ)m

τm
+ ... .

We will find the resultant radiative field.



Classical soft theorems
• We show for m = 2, 3, 4 :

Ãµ|ω→0 =
e iωr

4πir

[ 1

ω
S0 +

∞∑
m=1

Sclass
m ωm−1(logω)m + ...

]
.

The form of Sclass
m is given by :

Sclass
m =

(i)m

m!

n∑
i=1

[
ei [

ε.pi
q.pi

(q.ci )− ε.ci ] (q.ci )
m−1

+ εµ qν1 ...qνm−1 F
µν1...νm−1

i

]
.

Fiµν1···νm = m
m+1∑
m′=2

eiciν1 · · · ciνm+1−m′

piνm+2−m′

mi
· · · 1

mi
pi [νm f

(m′−1)
iµ] .



Conclusion

• A new set of Qm-conservation laws (m = 1, 2, 3). Charges are
O(e2m+1) and tied to long range forces.

• Expected to be related to soft theorems for loop amplitudes.

• We derived these soft theorems for classical field for
m = 2, 3, 4.

• There is compelling evidence that this structure holds for all
m’s. These interesting questions need to be explored.
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THANK YOU !



Comparison between future and past solutions (1)

Using �Aµ = −jµ,

Aσ(x) =
1

2π

∫
dτ δ( (x − x ′(τ))2) jσ(τ).

• The retarded root of the delta function is

τ0 = −Vi .(x − di )−
[

(Vi .x − Vi .di )
2 + (x − di )

2
]1/2

. (4)

• Around future :

τ0|I+ =
u

(V 0
i − x̂ .Vi )

+O(
1

r
).

• Around past :

τ0|I− = −2r (V 0
i + x̂ .Vi ) +O(r0).



Asymptotic dynamics including subsubleading term
Thus, asymptotic trajectories of the particles are corrected to :

xµi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
,

where

cµi = − 1

4π

n∑
j=n′+1,

j 6=i

eiej
pi .pj m

2
j p
µ
i + m2

i m
2
j p
µ
j

[(pi .pj)2 −m2
i m

2
j ]3/2

.

f µi = −
n∑

i=n′+1,
i 6=j

mim
2
j

QiQj

2

[
3mimjpj .ci

(pi .pj p
µ
i + m2

i p
µ
j )

[(pi .pj)2 −m2
i m

2
j ]5/2

+
[pi .pj c

µ
i − (pi .pj c

µ
j − pj .ci p

µ
j )]

[(pi .pj)2 −m2
i m

2
j ]3/2

]
.

(5)

(2)(3)



Log ω soft theorem

• Slog has 2 parts. A part that survives in the classical limit.

Sclass
log =

i

4π

∑
ηiηj=1
i 6=j

e2i ej
εµqν

(q.pi )
m2

i m
2
j pi [µ∂iν]

pi .pj√
(pi .pj)2 −m2

i m
2
j

• This term appears in the soft radiation emitted in a classical
scattering.
• Important to note that this term vanishes for massless particles.



Log ω soft theorem

• The other part is purely quantum and does not appear in
classical physics.

Squan
log = − 1

8π2

∑
i 6=j

e2i ej
εµqν

(q.pi )
pi [µ∂iν]

f (pi , pj)√
(pi .pj)2 −m2

i m
2
j

• The exact form of this expression is not important for us.
Interesting to note the relative factor of i between two terms.


