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Intro: Gauge Theories at large N

® Well known that ‘vector’ like large N limits are easy to
solve, but ‘matrix’ like large N limits are typically intractable.
Large N SU(N) gauge theories always have gauge bosons
which are matrix like fields. Typically hard to solve.

@ Exception. Pure Chern Simons theory in d = 3. Solvable
at finite N. So also at large N. Price you pay for this: the
theory is topological.

@ Now consider CS theories coupled to matter in the
fundamental rep. Now genuine QFT. Realized in 2011
theory still solvable at large N

@ Large N solution much studied in last 9 years in the limit
N — oo, k — oo N/k held fixed. Results nontrivial function
of this ratio. Study of these exactly solved field theories
continues to lead to new qualitative insights. (Hopefully)
new such lesson in this talk.
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Intro: ‘Quasi Fermionic’ theories

@ Simplest and best studied large N matter CS theories. So
called Quasi Fermionic theories. This talk: single matter
ﬂaVOUf. (Generalization to finite number of flavour Ny also solvable and studied. Ignore in this talk.

Generalization to Ny order N not solvable using our large N techniques).

@ At least order by order in 1/N, theories defined by path
integral using actions

SU(NF)

reg 7
(ke (KF>) /(Dllﬁ//l‘ + Mg 9
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@ Refer to these as the ‘regular fermion’ and critical boson
’[heorleS reSpeCtlver Can also interchange fermionic SU and bosonic U theories- or

study U U theories with shifted U(1) levels. All very similar at large N.
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Intro: Duality map and notation

@ These two classes of theories are conjecturally dual.
@ Notation

N,
kg = sgn(ks)(Ng + |ks|), Ag = /.B. (and B+ F)
B

@ Conjectured duality map

i kel + N,
ks = —sgn(kr)Ng, Np = |kg|, mg' = (”""‘) me

ke

@ Equivalently

cri

KB = —KF, AF=MAg— sgn()\B). 7/\5mB = ml/_ig

@ Level and rank duality map believed to be exact. Mass
map known only at leading order in large N. Note large N
results nontrivial function of effective 't Hooft coupling .
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‘Quasi Fermionic’: Phases 1

@ Simple gauge invariant operators J; are bilinears and so
always bosonic. Obscures Bose Fermi nature of duality.

@ Motivates the study of massive phases where gauge
charged particle like excitations appear meaningful.

@ Mass term only relevant operator. Phase diagram with two
distinct massive phases (sign of deformation) separated by
a second order phase transition.

@ Bosonic side. Positive mass deformation m& > 0. SU(Np)
‘spins’ in the paramagnetic phase, gauged. Elementary
excitations the SU(Ng)x, ‘spins’ created by the boson ¢?.

@ Negative mass deformation mgi < 0. CS gauged
SU(Ng)x, ‘spins’ in the ferromagnetic phase. Higgs
phenomenon. Use unitary gauge to put ¢ in N direction.
¢ degrees of freedom eaten up. SU(Ng — 1)k, CS gauge
fields coupled to a massive fundamental W, boson plus
massive neutral Z, boson. ‘Vector Excitations’.
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Intro: ‘Quasi Fermionic’: Phases 2

® m3' > 0 maps to m*kr > 0. Two phases, massive
fermions with masses of opposite signs. Low energy
theories topological.

U(NF)(kaF) — SU(NB)kB
U(NF)(/;F-/N(F) < SU(NB — 1)/(5

ke = sgn(ke)(|kg| — 1), < means level rank dual to

@ Excitations on both signs are the elementary fermions.

@ How do the elementary charged excitations map across
duality?

@ Claim. First phase the fermions map to the elementary
bosonic spins. Second phase the fermions map to the W,
bosons. Return to this point below.
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Spins: The puzzle

Puzzle. ¢ is a scalar field. Its excitations classically have
spin zero.

W, is a vector field. Classically, the excitation created by it
can easily be shown to carry spin of modulus unity. More
precisely the spin of this excitation classically equals
sgn(kg).

On the other hand v excitations classically have spin of
modulus % More precisely the classical spin of these
excitations is *227)

Given all these facts, how can ¢ and W, excitations
possibly be dual to ¢ excitations as we have claimed
above?
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Spins: The resolution

@ Answer. Intrinsic (or classical ) spins are additively
renormalized by a statistical Chern Simons (analogy
E x B) contribution. Sgi = %}R) Physical requirement
B

B F F
Sintrinsic T Sstat = Sintrinsic T Sstat (1)
@ It turns out (group theory)

F g _ sgn(ks)  sgn(kF)
Sstat — Sstat — 2 - 2

@ Follows that (1) works provided

1
Shrinsic = 5 (szn(me) — sgn(ke)).

But easy to see its true in both phases. Indeed the exact
solution for ¢, W,, and ¢ propagators demonstrates that
excitation masses also match across duality.
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Exchange statistics: the puzzle

@ Have seen that proposed dual excitations have equal
values of all spacetime quantum numbers (spins and
masses) across duality. Fantastic.

@ However this is not enough to resolve all paradoxes. Recall
that two (and in general multi) particle boson/fermion
states are necessary antisymmetric under exchange. How,
then, can the spectrum of multiparticle states match across
duality?

® Might at first suspect that the resolution to this puzzle lies
in anyonic phases. Perhaps the anyonic phases equalize
statistics. At large N (in fact at any N # 1) this is not the
case as we now explain.(Sense in which it is true at
N=1,k=1.)
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Statistics: Irrelevance of anyonic phases at large N

@ To see clearly consider the non relativistic limit.
@ Problem equivalent to scattering of a non relativistic
particle of a flux tube of magnitude
, _ C(R1) + &(R2) — C(R)

K

@ 27v = effective anyonic phase seen by the S matrix. Turns
out v = O(1/N) in both FF — FF channels. Scattering of
two identical fundamentals effectively non anyonic.

@ As an aside we note that at large N the only effectively
anyonic scattering channel is AF — AF in the singlet
sector. As an aside we note that there is an interesting
related issue - the usual rules of S matrix crossing
symmetry are violated in this channel. Unrelated to
question of this talk - will not elaborate - move on.
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Statistics: Resolution

@ Resolution to this puzzle obtained from the results of
computation of the the exact (large N) S matrix of two
fundamental fermions or bosons.

@ Two inequivalent channels of scattering:

FF — FF (sym), FF — FF (as)

@ Direct (all orders) computation.
SBOSO” — apsym + bpas. SFerm/'on — bpsym JF a/Pas.

@ Lesson: the difference between Bose and Fermi statistics
is compensated by nontrivial duality action on ‘hidden’
gauge indices. A state symmetric in gauge indices. Allows
for matching of statistics for ‘non hidden’ indices. Physical
‘explanation’ of the well known map between
representations of Wilson loops under level rank duality.
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Statistics: Loose End

@ There is an obvious issue with the discussion of the last 5
slides. How can (for instance) the ¢ particles map to
particles in the unHiggsed phase when there are Ng ¢
particles but Ng 1 particles?

@ CS theories on R? need to be carefully defined (what are
the boundary conditions on gauge fields at infinity? Are
there WZW type edge modes on Z+ and Z ). A safe (if bit
boring) way to define the theory is by regarding R as S? in
the limit of an infinitely large radius.

@ With this definition single particle states don’t exist. Gauss
law. Contradiction disappears at level of states with few
particles. One might, however, suspect that the
contradiction will return when the number of particles
becomes much larger than Ng or Ng. Turn to study of
thermodynamics on S? - and to the question of quasi
particle occupation numbers. Will lead to next puzzle.
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Review: Thermal partition function |

® The thermal partition function of (for instance) the regular
boson theory, Z on S? x S' is given as follows.

°
Zgeyst = /[dU]CS e 2Tl @)

@ Here the unitary matrix U is the zero mode of the gauge
field holonomy around the thermal circle S'. V5 is the
volume of S? and T is the temperature. [dU]cs is a
Chern-Simons modified Haar measure. p is the holonomy
eigenvalue distribution function. v[p] is defined by

°
e Va2T?vinl _ / [dg] e Slo] (3)
R2x St ’

[d¢] is the integral over all field theory modes other than
the holonomy zero mode.
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Review: Thermal partition function |

® The thermal partition function of (for instance) the critical
boson theory, Z on S? x S' is given as follows.

o
Zog = / [dU]cs e V2TV @)

@ Here the unitary matrix U is the zero mode of the gauge
field holonomy around the thermal circle S'. V5 is the
volume of S? and T is the temperature. [dU]cs is a
Chern-Simons modified Haar measure. p is the holonomy
eigenvalue distribution function. v[p] is defined by

°
e Va2T?vinl _ / [dg] e Slo] (5)
R2x St ’

[d¢] is the integral over all field theory modes other than
the holonomy zero mode.

Shiraz Minwalla



Review: Thermal Partition Function I

@ The great thing is that v[p] is effectively computable in the
large N limit. The computation proceeds by setting up and
exactly solving a Schwinger Dyson equation for the exact
thermal propagator and then ‘bootstrapping’ the result for
this two point function into a result for the thermal free
energy.

@ Final result for v[p] for the Critical Boson theory is the
extremum over the auxiliary variables S and &g of the so
called ‘off shell free energy’.

Fe(ca, )
NB 3A2 ~cri 2 S 1 ~cri 3 ~ & 1 acri
= onp [Ecsmg' —4axg (S - 3ag)" +elnples (S - bag)

~3 e [T —et+ptia —e—p—ia
—Ctg+3 [ dee da pg(a) (log(1 — e )+ log(1 — e NI - (6)
CB —T

2
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Review: Thermal Partition Function Il

@ Though I will not display the detailed expressions, it turns
out that the exact solution for the thermal two point function
from which this expression follows is very simple. In
particular the only non analyticities of this propagator are
poles (there are no cuts or any other complicated analytic
structures).

@ It follows that the thermal ensemble described by our exact
all orders result is very simple. Its given by a collection of
quasiparticles that are infinitely long lived in the large N
limit. The masses of these quasiparticles are dynamically
determined by extremizing the off shell functional (6).
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Review: Thermal Partition Function IV

@ Actually the previously computed expression (6) had been
computed only for a range of chemical potentials. (6) is
correct only when |u| < ¢g. In today’s talk we will be very
interested in the complementary range of parameters, i.e.
chemical potentials that are larger than the thermal mass.

® So the first technical job we had to undertake in the current
paper was to generalize (6) to this complementary range of
chemical potentials. | will spare you the details of how we
obtained this generalization, and simply present our final
results in a special limit (the limit in which the volume of the
sphere is taken to infinity, i.e. the limit of primary physical
interest).
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Corrected results for Thermal Partition Function

o
Fes(ca, S)
NB 3 ~2 A 3 1 ~cri)2
= e [ g —axg (5 - 1mg') +67sles ($ - Sig')
oo xlAgl o o
B / de / B |og(1 —6+[A,+/a)+ log(1 — e—s—p,—/a))
27\'\)\3\ 7r\>\5|
(12 — e8)° (1l + 28p)

@ The last line of (7) - proportional to ©(|u| — ¢g) - is new. As
you will see it will play a crucial role in the story that follows.

@ The regular boson theory has a similar correction term.
The fermionic theories, on the other hand, receive no theta
function type corrections to their off-shell free energy
formulae in the V — oo limit They do receive such corrections - which we have
determined - at finite V, but | will not describe them further in this talk.

@ The function v[p] obtained on extremizing the simple
expression (7) w.r.t auxiliary variables is a complicated
function of temperature, chemical potential and couplings:
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Occupation Numbers: The puzzle

With the technicalities under control we can now return to
reconciling the difference between fermions and bosons.
We have seen that the thermal ensemble of the CB theory
(and though we have not given details, also of the dual RF
theory) is effectively an ensemble of free quasi particles.
As reviewed above, the quantum numbers of all quasi
particles match perfectly across the duality.

How is all this consistent with the fact that the occupation
number of an ensemble of effectively free Fermions and
bosons to have effectively different single particle
occupation numbers for single particle states of energy e
and charge g (in our theories g = +1 for fundamental /
antifundamental particles)

1 = B 1
eBle—aqu) 4+ 1’ Ble 1) = eBle—aqu) _ 1

(8)

nr(e, p) =

Shiraz Minwalla



Occupation Numbers: Resolution |

@ In order to resolve this paradox we simply use the explicit
results of the off-shell free energy to compute the charge
of our ensembles.

@ Recall that the free energy F is simply the extremal value
of the off-shell free energy F w.r.t. auxiliary variables and
holonomies. Schematically

F(u) = F(oj(p)sp) - (9)

@ It follows from the chain rule that

o <z);f(,1)>f _OF

ou W

oF

R — 0wl
Pi=Pi i e

on

. (10)

o ou

@ However F is obtained from F precisely by extremizing F
w.r.t. ¢. It follows that ng,- vanish on-shell.
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Occupation Numbers: Resolution Il

@ It follows that on-shell
_OoF
o

(11)

hi—
Fi—=Fj

So we the charge can be written in terms of the simple
off-shell free energy rather than in terms of the
horrendously complicated on-shell free energy.

@ A simple computation demonstrates that the net charge of
our system is indeed given by the sum over charges
associated with each quasiparticle state, provided the
quasiparticle occupation numbers ng(e, 1) and ng(e, i) are
give by:

Shiraz Minwalla



Corrected Fermion Occupation Numbers

_ 1 I AF| J 1 -
n ) = / . ,
F(( /1) _ /TT)\F @ el (e—qu)—iqo +1 ( )

3(e—qu)
1 LI eff((*ciff)qt | AF|

=5 an .
2 7 T eBle—an) 11 2

@ The first line of (12) was obtained by Geracie, Goykhman
and Son. The formula on the second was obtained in our
paper.

® (12) is a one parameter generalization of the famous
occupation number formula of Fermi statistics cited above.
It reduces to the standard formula in the limit |Ag| — 0.
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Corrected Boson Occupation Numbers

ng(e, i)
1 (Al 1 1

T 2r A8l Jxag de eB(e—qu)—iga _ 4 + Mgl O(qu —€),
(13)
_ 1—|\g| B 1 can—] <e~;(r au) _ A4 Cotﬁ /\B>
2|\g| 7| Ag] eble=aqn) 4 1 2 ’

@ This new result for the bosonic occupation number is a one
parameter generalization of the famous Bose Einstein
occupation number formula (see above). For states with
e > q|u| it reduces to this well known formula in the limit
Mg — 0. See below for more discussion of states with
€ < |pl.
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Map of Occupation Numbers under Duality

@ The occupation numbers listed above do not map to each
other under duality. Instead they obey the following slightly
more involved relation

NERE(e, 1) = Nhig(e, 1) - (14)

@ But this is precisely what should happen in order that the
net charge agree across duality.

@ Once again we see that the invisible ‘gauge’ quantum
numbers are the key to reconciling duality and statistics.
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Zero Temperature Limit: Fermions

@ ltis instructive to examine what happens to the modified
occupation number formulae in the limit that the
temperature is taken to zero.

@ In this limit the fermionic occupation number simplifies to

F’F(ev /’L) = @(qﬂ - E) ) (15)

@ At zero temperature we see every quasi fermionic state is
occupied exactly once. It follows, in other words, that the
zero temperature phase of our fermionic quasi particles is
simply a garden variety Fermi Sea.
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Zero Temperature Limit: Bosons

@ For bosons, on the other hand, we find that at zero
temperature

1—[Asl

ng(e,p) =nO(qu—¢), with n=
RY:]

(16)

@ To understand the interpretation of this formula, recall that
in a truly free bosonic theory characterized by the
ensemble Tre (<~ every quasiparticle state with
gu > e is infinitely populated (and all other states are
unpopulated).

@ In the limit |A\g| — 0 this is exactly how (16) behaves. It
follows that the zero temperature bosonic phase is that of a
Bose condensate. The run away condensation of a free
Bose theory is stabilized by the Chern Simons interactions.
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Bose Exclusion Principle

@ The Fermi exclusion principle asserts that no one particle
fermion state can be occupied by more than one fermion.
The results of the previous slide suggest that Chern
Simons coupled bosons obey an analogous Bose
exclusion principle. No single particle boson state can
have occupation number greater than

1—1[Ag| _ |8

n= el Ne (17)

@ As the RHS of (17) is, in general, fractional, the meaning of
this principle seems quite mysterious. Note however that
Ngn = |kg| is an integer.

@ This suggests that we should word the Bose exclusion
principle in the following way: the net occupation number
of any single particle state, once we sum over all colours,
cannot exceed |kg|.
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Bose Exclusion Principle and WZW representations

@ Worded in this manner, the Bose exclusion principle is
strongly reminiscent of the fact that one is not allowed to
completely symmetrize more than | k| fundamental indices
in SU(N), WZW theory. Though we do not understand the
details yet, it seems likely to us that this observation will
provide an ‘explanation’ of the Bose exclusion principle.

@ Note that the Bose exclusion principle stated is this
manner fits perfectly with the ideas of level rank duality -
which - recall, roughly speaking interchanges rows and
columns of a Tableaux.
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Which Bosons Condense?

@ Recall that zero temperature zero chemical potential phase
diagram of the CB theory is given by

Higgsed Phase unHiggsed Phase

A

Cri Cri
mg < 0 S mg > 0

Figure: Phase diagram of the critical boson theory as a function
of mg at |u| = T = 0. Here, s marks the origin of the m&' axis at
which point the theory undergoes a second order phase
transition.

@ The charged excitations of the Higgsed phase are W,
bosons. The charged excitations of the un Higgsed phase
are simple bosons. Might thus seem there are two
inequivalent Bose condensed phases.
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Critical Boson Phase diagram

@ Not difficult to use the exact above to work out the free
energy in all phases. We find the following phase diagram.

Higgsed phase condensed phase unHiggsed phase

mB
lul < cs S2 |1l > cs st lul < cs

Figure: Phase diagram of critical boson theory as a function of
mgi at fixed p. At the points s = |ul, 2 = |M|(2 'AE") the
theory undergoes a second order phase transmon The point
inside the condensed phase corresponds to mg' = —|u|(1‘}‘;f")
and denotes a change in description from that a phase of
condensed scalars to one of phase of condensed W-bosons

though the condensed phase is itself unique.

@ We see the two condensed phases are simply analytic
continuations of each other - they are the same phase!
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Phase diagram of the Regular Boson theory

@ In addition to the CB and RF duality, it has also been
conjectured that so called Regular Bosons and Critical Fermions
are dual to each other. We have also worked out the more
complicated finite chemical potential phase diagram of these
more complicated theories. To end this talk | simply flash results.

Agba /|| Agba /|1
Agba /||

Condensed Condensed

Condensed

m/u® m/|uf?

ma/|u?
B unHiggsed

Higgsed unHiggsed

Higgsed unHiggsed

on<xf <0 0 < xB < J(on+ ¢u) 100+ ¢u) < xE < o4

Figure: Phase diagram for the regular boson theory at zero
temperature for various subranges of the stable range ¢, < x6B < ¢y.
The blue lines are second order transitions while the green lines are
first order transitions.
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Discussion

@ It would be very interesting to re-derive the effective
occupation number formulae presented in this talk from a
Hamiltonian (Schrodinger Equation) viewpoint. Would help
us better understand their origin.

@ Would be useful to understand the Bose exclusion
principle from several points of view, including the
connection to WZW theory.

@ The Bose condensate encountered in our analysis is an
extremely simple stabilization of the run away instability of
free theory. The sharp cut off at k¢ plus the Bose exclusion
principle gives this phase all the properties of a Fermi Sea.

@ It would be interesting to investigate the dynamical
implications of the Bose condensation principle. Cut off
lasers?
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