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Motivation



Lets start with Black hole and Event horizon

• In 1915 Einstein came up with his stunning idea of General Relativity.

• Einstein’s equation

Rµν − 1

2
gµνR + Λgµν =

8πG

c4
Tµν

• However, essential singularities exist in the solution of Einstein’s equation

– Black holes.

• An event horizon is that region in space-time beyond which events cannot

affect an outside observer.

And this one-way membrane has some fascinating characteristics....

1



Black hole thermodynamics

• In the early 70’s Bekenstein and Hawking demonstrated that BH horizon

shows thermodynamic phenomena. [Bekenstein: PRD 1970, Hawking:

Nature 1974]

• Hawking showed Temperature associated with the horizon is observer

dependent and a pure quantum quantity [Hawking: 1974, 1975]

T =
ℏκ
2π

(1)

where κ is the surface gravity of BH.

• However, BH thermodynamics originates through an analogy between the

laws of BH and those of usual thermodynamical systems

dM︸︷︷︸
dE

= Θdα︸ ︷︷ ︸
TdS

+ΩdJ +ΦdQ︸ ︷︷ ︸
−PdV

(2)

So the question: why thermodynamical quantities are associated with the

horizon?
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Near horizon chaotic dynamics

• Systems start showing chaotic dynamics whenever it comes under the

influence of horizon [Cardoso: 2008, Hashimoto: 2017,2018, Cubrovic:

2019, and lots of papers...].

• Here, I will particularly address the massless particle case.

• Study of the massless particles that follow null geodesics is an interesting

one as photons come out as Hawking quanta from BH.

• However, the reason behind this chaos is not fully understood.

So another question emerges: Why horizon creates chaos?
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Is there any connection between chaos and thermality?

• Whenever there is chaos - - there is Lyapunov exponent (LE).

• According to Sachdev-Ye-Kitaev (SYK) model the universal upper bound

of LE is the surface gravity [Maldacena, Shenker, Stanford: JHEP 2016].

• Interestingly, this upper bound is dependent on temperature [Shenker and

Stanford: JHEP 2014].

• Also, surface gravity is connected to Hawking temperature.

That means: Is there any relationship between chaos and thermality?
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There are some connections indeed!

Some evidences show that there is a link ....

• Chaotic systems has an intrinsic connection with Quantum thermalization

through Eigenstate thermalization hypothesis [M. Srednicki: PRE 1994 ].

• An unstable classical mode with fixed LE cannot have zero temperature in

the quantum scale [T. Morita: PRL 2019 ].

• Inverse Harmonic Oscillator (IHO) causes temperature to rise under

quantization and temperature is proportional to LE [Hegde et al: PRL

2019 ].

Therefore, can we explain the horizon thermality through instability?
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Chaos near Event horizon



Massless particle moving near a Static Spherically Symmetric black hole

horizon

• Starting with a static, spherically symmetric blackhole background

ds2 = −f (r)dt2 +
dr 2

f (r)
+ r 2dΩ2

where the horizon r = rH is determined by f (r = rH) = 0.

• In Painleve coordinate transformation:

dt → dt −
√

1− f (r)

f (r)
dr

the metric becomes

ds2 = −f (r)dt2 + 2
√

1− f (r)dt dr + dr 2 + r 2dΩ2

• Now using the covariant form of the dispersion relation g abpapb = −m2

and expanding this under the background, we obtain

E 2 + 2
√

1− f (r) prE −
(
f (r)p2

r +
p2
θ

r 2

)
= m2 (3)
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Near Horizon approximation

• Now for a massless particle Eq.(3) becomes

E = −
√

1− f (r) pr +

√
p2
r +

p2
θ

r 2
[for outgoing particle] (4)

• Now the radial motion of the particle very near to the horizon (taking

pθ = 0) for the energy (4) is

ṙ =
∂E

∂pr
= −

√
1− f (r) + 1 (5)

Making an expansion of f (r) near the horizon as

f (r) ≃ 2κ(r − rH) [where κ = f ′(rH)/2 ] (6)

• Now the solution of Eq.(3) → r = rH + C rH eκλ → Exponential

Growth→ Signature of Chaos !!
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Our system

• In order to trap the particle near the horizon we introduce some external

potential.

• Here, we trap the particle using a harmonic potential.

• Our aim is to study how blackhole horizon influences an integrable system

and affects the motion of the particle in it.

• We consider the potential form of the system

V (r , θ) = (1/2)Kr (r − rc)
2 + (1/2)Kθ(y − yc)

2 where y = rHθ

• Corresponding total energy

E = −
√

1− f (r) pr +

√
p2
r +

p2
θ

r 2
+

1

2
Kr (r − rc)

2 +
1

2
Kθ(y − yc)

2
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Poincaré Sections of the motion of the particle near the SSS BH horizon for

different energies

Figure 1: The Poincaré sections in the (r , pr ) plane with θ = 0 and pθ > 0 at

different energies for the SSS black hole. The energies are E = 75, E = 76.8, E = 77,

and E = 79. The other parameters are rH = 2.0, κ = 0.25, rc = 3.2, θc = 0,

Kr = 100 and Kθ = 25. For large energy the KAM Tori break and the entire region

gets filled with the scattered points indicating the presence of chaos.
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Poincaré Sections of the motion of the particle near the Kerr BH horizon for

different energies

Figure 2: The Poincaré sections in the (r , pr ) plane with θ = 0 and pθ > 0 for

different energy for the Kerr black hole model at fixed rotation parameter a = 0.9.

The other parameters are same as in Fig. 1. For large energy the KAM Tori break and

the entire region is filled with the scattered points indicating the chaotic trajectory of

the particles.
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Poincaré Sections of the motion of the particle near the Kerr BH horizon for

different rotation parameters (a)

Figure 3: The Poincaré sections in the (r , pr ) plane with θ = 0 and pθ > 0 for fixed

energy E=50 with different rotation parameter a. The rotation parameter a = 0.6,

a = 0.8, a = 0.9, and a = 1.3, respectively from the top to the bottom. The other

parameters are rH = 2.0, and Kr = 100 and Kθ = 25. Increase in the rotation induces

the chaos in the particle dynamics.
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Numerical analysis of the Lyapunov Exponent λL

Figure 4: Largest Lyapunov exponent for

the SSS black hole at the energy value

E = 78. The exponent settles at positive

value ∼ 0.04.

Figure 5: Largest Lyapunov exponents for

the Kerr black hole for different values of

the rotation parameter a = 0.6, 0.8, 0.9

and 1.3 at constant energy E = 50. The

exponents increases on increase of a.
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Why chaos is happening?



Outgoing path of the massless particle in EF

• Static Spherically Symmetric BH metric in E-F coordinates (t, r , θ, ϕ)

ds2 = −f (r)dt2 + 2
(
1− f (r)

)
dtdr +

(
2− f (r)

)
dr 2 + r 2

(
dθ2 + sin2 θdϕ2

)
.

where t = v − r = ts + r∗ − r and r∗ =
∫

dr
f (r)

.

• Particle motion along the normal to the surface U = constant = K .

• Since we are interested in the near horizon region, at the end, the limit

(u → ∞, i.e. ts → ∞) U = K → 1 will be taken to achieve our goal.

• The null normal components to the U = constant surface are (taking the

gradient of U)

la =

(
1,

f (r)

2− f (r)
, 0, 0

)
. (7)

• Now the integral curves xa(µ) = (t, r , θ, ϕ) of la, characterized by

dxa(µ)

dµ
= la(x(µ)) , (8)

where µ is the parameter which fixes the particle position at a particular

moment
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Radial behaviour: Instability near horizon

• From the time component of la

dt

dµ
= 1 ⇒ µ = t . (9)

• From the radial component of la

dr

dt
=

f (r)

2− f (r)
. (10)

• Since we are interested in the near horizon region, therefore

f (r) ≃ 2κ(r − rH) (11)

• Substituting this in (10) and then keeping upto the relevant leading order

(O(r − rH)), we obtain

dr

dt
≃ 2κ(r − rH)

2− 2κ(r − rH)

≃ κ(r − rH) . (12)

The solution of it is

r − rH =
1

κ
eκt (13)
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Covariant realisation of local instability

• What happens to the family of null geodesics in the near horizon region?

Expansion parameter (Θ) can be an important quantity to answer that.

• Raychaudhuri equation for null geodesics:

dΘ

dµ
= κ̃Θ− 1

2
Θ2 − σabσ

ab + ωabω
ab − Rab l

alb . (14)

• We have found the shear parameter σab = 0, since la is hypersurface

orthonormal, we have the rotation parameter ωab = 0. In the near horizon

region we have also Rab l
alb ∼ O(r − rH)

2 and Θ ∼ O(r − rH) and

κ̃ = κ+O(r − rH).

• Therefore, keeping the leading order terms the right hand side of

Raychaudhuri equation becomes

dΘ

dµ
= κΘ ⇒ dΘ

dt
= κΘ (15)

and the solution of it is

Θ = κeκt (16)
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Near horizon Hamiltonian construction

Hamiltonian from trajectories:

• Near horizon radial motion from before (here x = r − rH)

ẋ =
∂H

∂p
= κx . (17)

Solution of this H = κxp + f1(x), where f1(x) is an arbitrary function.

• Lagrangian for this comes out to be

L = pẋ − H = −f1(x) . (18)

• As we know for massless particle the Lagrangian must vanish. So, we must

choose f1(x) = 0. Thus the Hamiltonian in the near horizon region is given

by

H = κxp (19)

xp in disguise of Inverse harmonic oscillator!!
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Emergence of Thermality



• Following the classical picture we next proceed for the quantum

calculation in the present chapter.

• What are the quantum consequences of the near-horizon Hamiltonian

H ∼ xp?

• We shall apply quantum tunneling method in the near horizon region to

see how particles behave in the quantum scale near the horizon.
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Quantum Tunneling

• Classically nothing can escape from BHs but the quantum probability of

escaping from barrier of the horizon can be different.

• Tunneling formalism is mainly used to study the Hawking effect. Adopting

the concept of the mechanism, here we shall calculate the tunneling

probability of the particle.

• The main essence of tunneling mechanism is to calculate the imaginary

part of the classical action of the outgoing particle.

• There are two methods to calculate the action - -

(a) Hamilton-Jacobi method [Srinivasan and Padmanabhan: PRD 1999]

(b) Radial Null Geodesic method [Parikh and Wilczek: PRL 2000]

• Here, we shall apply HJ method.

18



Methodology for the calculation of tunneling

For our present situation, both the outgoing and the ingoing particles are just

outside the horizon but very near to the horizon.

↓

Our aim is to calculate the emission probability of the outgoing particle while

the absorption probability for the ingoing one.

↓

The ratio of both the probabilities will give us the tunneling probability.

↓

But before that we have to calculate the HJ action for both outgoing and the

ingoing particle.
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• Standard ansatz for wave function for a particle

ψ(x) ∼ exp

[
− i

ℏ
S(x)

]
(20)

where S(x) is the Hamilton-Jacobi action for the particle defined as

S(x) =

∫
p dx (21)

• Now, the outgoing and the ingoing trajectories corresponds to

∂S

∂x
< 0 (outgoing) and

∂S

∂x
> 0 (ingoing) (22)
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Calculation of the HJ action for outgoing particle

• The energy of the outgoing particle E = κxp (from (52)). Therefore

S [Emission] =
E

κ

∫ ϵ

−ϵ

dx

x

= − iπE

κ
+ (real part) . (23)

where ϵ > 0 and the limit x = −ϵ to x = ϵ means from just inside the

horizon to just outside.

• x = 0 is the pole of the integrand. To evaluate it, the upper complex

plane is being considered.

• Since the particle starts from inside the black hole where x < 0 and we

have ∂S/∂x < 0 which is consistent with the definition of the outgoing

nature of the particle.
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Calculation of the HJ action for the ingoing particle

• For the ingoing particle the energy comes out to be

E = −p (24)

• Therefore, the “absorption” action for the ingoing particle comes out to be

a real quantity.

• This is trivial because the the limits of the integration for the “absorption”

action never includes the horizon singularity.
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Tunneling probability and Hawking temperature

• The probability of absorption for the outgoing particle

P[Emission] ∼
∣∣∣e− i

ℏ S[Emission]
∣∣∣2

∝ exp

(
−2πE

ℏκ

)
. (25)

• The probability of emission of the ingoing particle turns out to be

P[Absorption] = 1 . (26)

• Hence the tunneling probability is evaluated as

Γ =
P[Emission]

P[Absorption]
∼ exp

(
−2πE

ℏκ

)
. (27)

• Note that the above one is thermal in nature. The temperature is

identified as

T =
ℏκ
2π

. (28)

This temperature exactly matches with the standard Hawking expression

for black hole.
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Other methods

• In order to get a distinct idea about the observer and the relevant vacuum

state we performed the detector response where the detector follows the

null trajectory in EF coordinates in the near horizon regime. The vacuum

is chosen to be Boulware vacuum and it showed that the detector will see

this vacuum as thermal bath.

• We also studied the scattering phenomena in the presence of this unstable

xp kind near horizon Hamiltonian. Identifying the “in” and “out” states we

obtained the transition probability which yielded the thermal nature again.

• Our last approach was to find out the thermality using a perturbative

approach in presence of xp Hamiltonian. The motive of this approach was

to construct a simple quantum mechanical model which mimics the near

horizon characteristics.
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Generic Null Hyper-Surface



• Dynamical properties of a generic null surface are known to have a

thermodynamic interpretation.

• Such an interpretation is completely based on an analogy between the

usual law of thermodynamics and structure of gravitational field equation

on the surface.

• Therefore, in this chapter we want to materialise this analogy and show

that assigning a temperature on the null surface for a local observer is

indeed physically relevant.
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Outline

• The aim is to understand whether this unstable nature is a general feature

to any generic null hypersurface or not. Therefore, the same formalism will

be used for generic null-hypersurface.

• Adapting a coordinate system called Gaussian Null Coordinates (GNC) the

metric to any null surface takes the following form

ds2 = −2rαdv 2 + 2dvdr − 2rβAdvdx
A + qABdx

AdxB (29)

where r = 0 corresponds to the null surface. The metric components α, βA

and qAB are the functions of all the coordinates (v , r , xA)
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Field description

• Considering the massless real scalar mode ϕ, from the Klein-Gordon (KG)

equation □ϕ = 0 under the background of metric (29) yields

∂v (
√
µ∂rϕ) + ∂r (

√
µ∂vϕ) + ∂r

[√
µ
(
2rα+ r 2β2

)
∂rϕ
]
+ ∂r

(√
µrβA∂Aϕ

)
+∂A

(√
µ rβA∂rϕ

)
+ ∂A

(√
µµAB∂Bϕ

)
= 0 , (30)

where µ is the determinant of the induced metric µAB .

• Now, we start with the standard ansatz for the scalar mode as

ϕ = A(v , r , xA)e−
i
ℏ S(v,r,xA) , (31)

where S(v , r , xA) is the HJ action and with respect to the HJ action we

define the four-momentum as

∂S

∂xa
= pa . (32)
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• Now, expanding S(v , r , xA) in the powers of ℏ we find,

S(v , r , xA) = S0(v , r , x
A) + ℏS1(v , r , xA) + ℏ2S2(v , r , xA) + ....

(33)

• We define −∂S0/∂v = −pv = H, where H is the (semi-classical) Hamiltonian of

the system.

• In the semi-classical limit (i.e. ℏ → 0),

2(∂vS0)(∂rS0) + (2rα+ r2β2)(∂rS0)
2 + 2rβA(∂AS0)(∂rS0) + µAB(∂BS0)(∂AS0) = 0 .

Here we see from Eq. (34) that ∂rS0 has two solutions which are

∂rS0 = −
∂vS0 + rβA(∂AS0)

2rα+ r2β2
±

[(
∂vS0 + rβA(∂AS0)

2rα+ r2β2

)2

−
µAB(∂AS0)(∂BS0)

2rα+ r2β2

] 1
2

.

Among these two solutions, one corresponds to the outgoing mode, and the

other one corresponds to the ingoing one.
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System Hamiltonian

• The Hamiltonian for the outgoing mode comes out to be

H = α(0)(v , xA)rprout (34)

where prout is the outgoing momentum in r direction.

• The Hamiltonian for the ingoing one is

H =
1

2

µ(0)ABpApB
prin

, (35)

where prin is the ingoing momentum in r direction.
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Tunneling probability and Temperature

• The probability for the outgoing object crossing the null hypersurface

turns out to be

Pout ∼
∣∣∣e− i

ℏ Sout
∣∣∣2

∝ exp

(
− 2πĒ

ℏᾱ(v)

)
, (36)

whereas the probability of crossing the null hypersurface for the ingoing

one is Pin ∼ 1. Therefore, the tunneling probability comes out to be

Γ(v) =
Pout

Pin
∼ exp

(
− 2πĒ

ℏᾱ(v)

)
. (37)

where ᾱ(v)rprout ≡ Ē and ᾱ(v) =
∫
α(0)(v,xA)

√
µd2xA∫ √

µd2xA
.

• Therefore, the temperature of the system is identified as

T (v) =
ℏᾱ(v)
2π

. (38)

We see that the temperature is a function of the timilike coordinate (v),

unlike the case of SSS and Kerr.
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Therefore..

• We applied our previous methodology and show that assigning a

temperature on the null surface for a local observer is indeed physically

relevant.

• We found that for a local frame, chosen as outgoing massless chargeless

particle (or field mode), perceives a “ local unstable Hamiltonian” very

near to the surface and the Hamiltonian is H ∼ xp kind once more.

• Due to this xp Hamiltonian it has finite quantum probability to escape

through acausal null path which is given by Maxwell-Boltzmann like

distribution, thereby providing a temperature on the surface.

Here we basically generalise our conjecture for a generic null hypersurface by

showing the connection between local instability and thermality.
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Conclusions



• We observed that whenever a system comes under the influence of the

horizon, it starts showing chaotic dynamics.

• We tried to find out the reason behind this chaos and we obtained that

the near-horizon Hamiltonian (H ∼ xp) which provides the local instability

is responsible for that.

• We investigated the quantum consequences of this local instability in the

near-horizon region and we found out that this local instability is the cause

of thermalization in the system.

• We can also show that one can assign temperature on a null surface by

building the connection with local instability.

32



Concluding remarks:

Horizon creates a “local instability” which acts as the source of the

quantum temperature of the black hole.
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THANK YOU FOR LISTENING!
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Backup slides



For the Kerr Black hole (Chapter 2)

In the Painleve coordinate the Kerr metric can be written

dŝ2 = −fdt2 + gdr 2 + 2hdtdr + kdθ2

where,

f =
△Σ

(r 2 + a2)2 −∆a2 sin2 θ
;

g =
Σ

r 2 + a2
;

h =

√
2Mr(r 2 + a2)Σ

(r 2 + a2)2 −∆a2 sin2 θ
;

k = Σ = r 2 + a2 cos2 θ ,

and ∆ = r 2 + a2 − 2Mr . M is the mass of the BH and a = J/M is the angular

momentum per unit mass→ rotation parameter.

The event horizon is given by ∆ = 0. It leads to the location of horizon as

rH = M +
√

M2 − a2 .
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Kerr Blackhole (Chapter 2)

Using pap
a = 0 we find the energy of the particle which is moving through the

two harmonic potentials is

E = − h

g
pr +

√
h2

g 2
p2
r +

f

g
p2
r + (

1

k

fg + h2

g
)p2

θ +
1

2
Kr (r − rc)

2 +
1

2
Kθ(y − yc)

2

Using near horizon approximation i.e expanding f (r) upto the first order

f (r) = f (rH) + (r − rH)f
′(rH)

= − a2 sin2 θ

r 2H + a2 cos2 θ
+

r 4H − a4 cos2 θ + r 2Ha
2 sin2 θ

rH(r 2H + a2 cos2 θ)2
(r − rH)
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Chaos near Rindler horizon



Motivation of the chapter

• “Presence of horizon may produce chaos in an integrable system”- - the

whole idea is studied from a uniformly accelerated frame in the present

chapter.

• Rindler frame provides the horizon without any intrinsic curvature to the

system.

• It means if we can find chaos near the horizon in this case, then we can

claim that - -

“The mere presence of a horizon, rather than the inherent curvature is enough

to cause chaos in the particle’s motion.”
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• The frame of a uniformly accelerated observer is given by the Rindler

metric. In (1 + 3) dimensions it is of the form:

ds2 = −2ax dt2 +
dx2

2ax
+ dy 2 + dz2 . (39)

• In Painleve coordinate the metric becomes

ds2 = −2ax dt2 + 2
√
1− 2ax dtdx + dx2 + dy 2 + dz2 . (40)

• Now, in the similar approach after the introduction of the harmonic

potential we obtain the total energy of the system (for the outgoing

particle)

E = −
√
1− 2ax px +

√
p2
x + p2

y +
1

2
Kx(x − xc)

2 +
1

2
Ky (y − yc)

2 , (41)
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Poincaré Sections of the motion of the particle near Rindler horizon for

different energy values

Figure 6: The Poincaré sections in the (x , px ) plane with y = 1.0 and py > 0 at

different values of energy of the system but for fixed acceleration (a = 0.35). The

energies are E = 20, 22, 24 and 24.2. The other parameters are

Kx = 26.75, Ky = 26.75, xc = 1.1 and yc = 1.0. For large value of energy the KAM

Tori break and the regions filled with scattered points which indicates the presence of

chaotic motion in the particle dynamics.
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Poincaré Sections of the motion of the particle near Rindler horizon for

different values of acceleration

Figure 7: The Poincaré sections in the (x , px ) plane with y = 1.0 and py > 0 at

different values of acceleration of the system for fixed energy (E = 24.0). The values

of accelerations are a = 0.20, 0.27, 0.295 and 0.362. The other parameters are

Kx = 26.75, Ky = 26.75, xc = 1.1 and yc = 1.0. For large value of acceleration the

KAM Tori break and the scattered points emerge which indicates the onset of chaotic

dynamics.
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PSD (for a = 0.35)

Figure 8: E = 20

Figure 9: E = 22

Figure 10: E = 24

Figure 11: E = 24.2
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PSD (for E = 24)

Figure 12: a = 0.20

Figure 13: a = 0.27

Figure 14: a = 0.295

Figure 15: a = 0.362
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largest Lyapunov expnents

Figure 16: Largest LE for E = 24.2 and

a = 0.35. The exponent settles at positive

value ∼ 0.01.
Figure 17: Largest LE for E = 24 and

a = 0.362. The exponent settles at ∼ 0.02
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Conclusions of the chapter

• We have studied the motion of a massless and chargeless particle in an

accelerated frame in the flat space–time background.

• We found that particle trapped in harmonic potential shows chaotic

dynamics as it approaches nearer to the horizon.

• Our system satisfies the maximal value of LE which is a (acceleration of

the particle).

Therefore, we draw an important conclusion that - -

“mere presence of horizon is enough to make the particle motion chaotic”.
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Rindler EOM chapter 3

The corresponding equations of motion are

ẋ =
∂E

∂px
= −

√
1− 2ax +

px√
p2
x + p2

y

; (42)

ṗx = −∂E
∂x

= − a√
1− 2ax

px − Kx(x − xc) ; (43)

ẏ =
∂E

∂py
=

py√
p2
x + p2

y

; (44)

ṗy = −∂E
∂y

= −Ky (y − yc) . (45)
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Setting the stage for calculations (Chap 4)

• The model consists of a massless and chargeless particle moving very near

to the horizon of Static Spherically Symmetric BH

ds2 = −f (r)dt2s +
1

f (r)
dr 2 + r 2

(
dθ2 + sin2 θdϕ2

)
(46)

This coordinate system is singular at f (rH) = 0.

• We want the particle to follow the outgoing null trajectory. So,

Kruskal-Szekeras (KS) coordinates (U,V , θ, ϕ) in the null-null form will be

relevant one in this context.

• Since, the paths will be outgoing ones, we consider the particle

propagation along the normal to U = constant surface

U = exp(−κu) + 1 (47)

and u = ts − r∗.

• However, KS coordinates cover the whole spacetime adapted to freely

falling observer. In order to realize the horizon we adopt EF coordinates

(t, r , θ, ϕ). EF coordinates are well behaved in the vicinity of the horizon.
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From Θ to radial behaviour Chap 4

• General form of expansion parameter (Θ) in terms of la

Θ = ∇al
a − κ̃ (48)

where κ̃ is the non-affinity coefficient and its expression in this case

κ̃ =
2f ′(r)

(f (r)− 2)2
(49)

• For the SSSBH metric in E-F coordinates the value of expansion

parameter (at the leading order) becomes

Θ ≃ 2κ

rH
(r − rH) (50)

• Therefore, substitution of this in the solution (16) we obtain

r − rH ≃ (rH/2)e
κt (51)

Important: Although the instability is an observer independent feature, this

particular radial character with time is related to EF observer.
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Near horizon Hamiltonian construction using Dispersion relation Chap 4

Hamiltonian from the dispersion relation:

• SSSBH metric in EF coordinates had a timelike Killing vector

ξ′a = (1, 0, 0, 0) and the energy of the particle moving under the this

background is E = −ξ′apa = −pt where pa = (pt , pr , 0, 0).

• From dispersion relation g abpapb = −m2 (here m = 0) we obtain

E =
(f (r)− 1)pr ∓ pr

2− f (r)
, (52)

where +ve for outgoing particle and −ve for the ingoing one.

• The energy of the outgoing particle (taking +ve solution)

E =
(f (r)− 1)pr + pr

2− f (r)
(53)

• In the near horizon region it becomes (putting f (r) ≃ 2κ(r − rH))

E ≃ κ(r − rH)pr (54)
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Kerr spacetime chap 6

• Kerr metric in Boyer-Lindquist (BL) coordinates (tBL, r , θ, ϕBL):

ds2 = −
(
1− 2mr

ρ2

)
dt2BL −

4mar sin2 θ

ρ2
dtBLdϕBL +

ρ2

∆
dr 2

+ρ2dθ2 +

(
r 2 + a2 +

2mra2 sin2 θ

ρ2

)
sin2 θ dϕ2

BL , (55)

where m is the mass and a is the angular momentum per unit mass of BH.

ρ2 = r 2 + a2 cos2 θ and ∆ = r 2 − 2mr + a2.

• However BL coordinates are not regular at rH = m +
√
m2 − a2. So,

spheroidal version of EF coordinates (t, r , θ, ϕ) are adapted which is

related to BL as

dt = dtBL +
dr

r2+a2

2mr
− 1

, (56)

dϕ = dϕBL +
a dr

r 2 − 2mr + a2
. (57)
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Outgoing path of the massless particle in Kerr spacetime

• Kerr metric in spheroidal EF coordinates turns out to be

ds2 = −
(
1− 2mr

ρ2

)
dt2 +

4mr

ρ2
dt dr − 4amr

ρ2
sin2 θ dtdϕ

+

(
1 +

2mr

ρ2

)
dr 2 − 2a sin2 θ

(
1 +

2mr

ρ2

)
drdϕ

+ρ2dθ2 +

(
r 2 + a2 +

2a2mr sin2 θ

ρ2

)
sin2 θdϕ2 . (58)

• Killing vectors → ξa(t) = (1, 0, 0, 0) and ξa(ϕ) = (0, 0, 0, 1) and hence

E = −paξ
a
(t) = −pt and Lz = paξ

a
(ϕ) = pϕ. Therefore, the conserved

quantity K = −ξapa = E − ΩHpϕ.

• The null normal components to H

la =

(
1,

√
A− 2mr

ρ2 + 2mr
, 0,

a√
A

)
. (59)

where A = (r 2 + a2)2 − (r 2 − 2mr + a2)a2 sin2 θ.

• Then, the integral curves xa(µ) = (t, r , θ, ϕ) of la, are dxa(µ)
dµ

= la(x i (µ)) ,

µ→ parameter which fixes the particle position at a particular moment.
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Radial behaviour: Instability near the Kerr horizon

• from the time component of la

dt

dµ
= 1 ⇒ µ = t . (60)

• From the radial part

dr

dt
=

√
A− 2mr

ρ2 + 2mr
= fkerr (r). (61)

• It can be checked that fkerr (rH) = 0. Therefore, in the near horizon region

r → rH we have

fkerr (r) ≃ κkerr (r − rH) (62)

where κkerr = f
′
kerr (rH) and κkerr =

rH−m
2mrH

=

√
m2−a2

2m(m+
√

m2−a2)

• Therefore, we have the radial part in the near horizon region

dr

dt
≃ κkerr (r − rH) (63)

and the solution again shows

r − rH =
1

κkerr
eκkerr t (64)
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• From θ component of la

dθ

dt
= 0 ⇒ θ = constant . (65)

• From the azimuthal component of la

dϕ

dt
≃ a

2mrH
= ΩH

⇒ ϕ = ΩHt (66)
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• Using Raychaudhuri equation in the near horizon region for null geodesics

one can show

dΘ

dµ
≃ κkerrΘ (67)

and we obtain Θ ≃ κkerre
κkerrµ → instability just like the SSS case.

• The Hamiltonian in the near horizon region

H = κkerr (r − rH)pr +ΩHpϕ (68)
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Instability in the near Kerr horizon region

• Just like from the earlier methodology, from the Hamiltonian

H = κkerr (r − rH)pr +ΩHpϕ we obtain the radial momentum variation as

pr ∼ e−κkerr t . (69)

• Therefore, in the near horizon region, i.e. in the limit t → −∞, pr

diverges.

• This is the indication of instability in the near-horizon region just like the

earlier case.
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Temperature

• In the similar way using the tunneling approach we obtain the tunneling

probability

Γkerr =
P[Emission]

P[Absorption]
∼ exp

[
−2π(E − ΩHpϕ)

ℏκkerr

]
(70)

and the temperature of the system as

T =
ℏκkerr

2π
(71)
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Results and prospects of this work

• Like the earlier analysis of SSS case, this time, in Kerr spacetime we

obtain that local instability in the near horizon region provides

temperature to the system in quantum scale.

• Importance of this result: It turns out that the extension of our proposed

conjecture is applicable to much more general black holes also.

Hence, the generality of this conjecture is evident here and it may become one

of the leading candidates to explain the horizon thermodynamics.
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