Superradiant instability and black resonators in AdS

Takaaki Ishii (Kyoto U)

Based on 1810.11089, 1910.03234, 2005.01201 with Keiju Murata, Jorge E. Santos, Benson Way

4th Intl. Conf. on Holography, String Theory and Discrete Approach in Hanoi, Vietnam 7 Aug 2020 (online)

Contents

1. Superradiant instability of Myers-Perry AdS BH

2. Black resonators in AdS₅

3. Superradiant instability of black resonators

Superradiant instability of Myers-Perry AdS BH

Outline

Rotating black holes in asymptotically AdS space show superradiant instability.

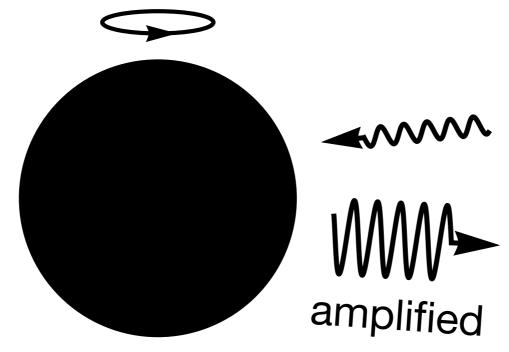
Myers-Perry AdS BH with equal angular momenta provides a simple setup to study this phenomenon.

The perturbation for the superradiant instability breaks the U(1) isometry of MPAdS BH.

Superradiance

Rotational superradiance: waves can be amplified near a rotating black hole.

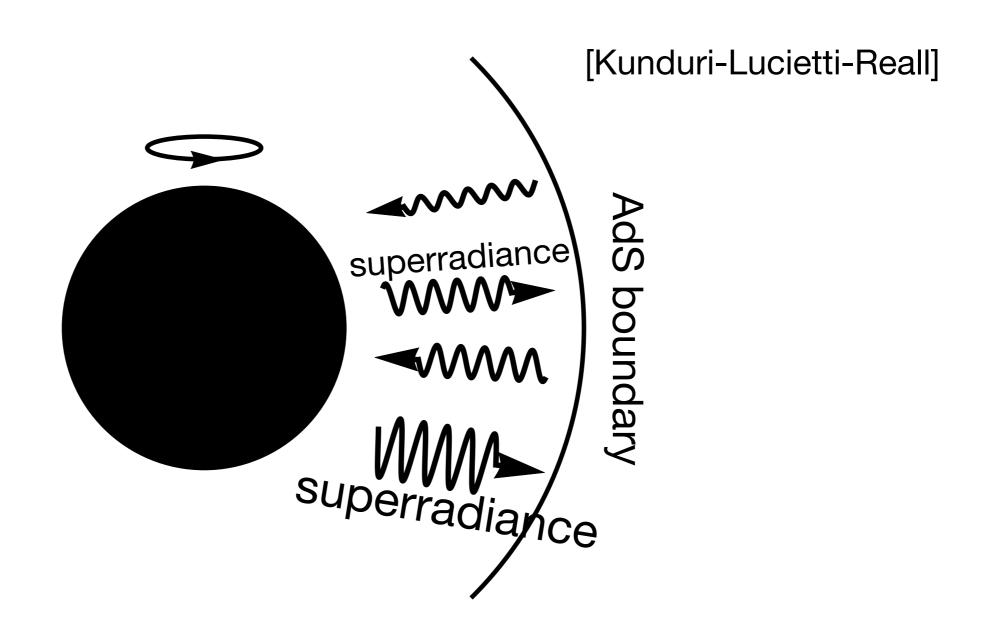
[Review: 1501.06570]



c.f.) charged superradiance for charged BH

Superradiant instability

In AdS space, amplified waves are confined in the geometry, and **superradiant instability** is induced.



5D MPAdS BH

5D Myers-Perry AdS black hole with equal angular momenta is given by a simple metric.

$$S = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left[R - 2\Lambda \right]$$

$$ds^{2} = -(1+r^{2})f(r)d\tau^{2} + \frac{dr^{2}}{(1+r^{2})g(r)} + \frac{r^{2}}{4} \left[\sigma_{1}^{2} + \sigma_{2}^{2} + \beta(r)(\sigma_{3} + 2h(r)d\tau)^{2} \right]$$

Metric components are functions of 1 variable.

$$f(r) = \frac{g(r)}{\beta(r)}, \quad g(r) = 1 - \frac{2\mu(1 - a^2)}{r^2(1 + r^2)} + \frac{2a^2\mu}{r^4(1 + r^2)}$$
$$\beta(r) = 1 + \frac{2a^2\mu}{r^4}, \quad h(r) = \Omega - \frac{2\mu a}{r^4 + 2a^2\mu}$$

Isometry of the equal rotation solution

When the two rotations are equal, the $R_{\tau} \times U(1) \times U(1)$ isometries of general MP BH are enhanced to $R_{\tau} \times U(2)$.

$$ds^2 = -(1+r^2)f(r)d\tau^2 + \frac{dr^2}{(1+r^2)g(r)} + \frac{r^2}{4} \left[\sigma_1^2 + \sigma_2^2 + \beta(r)(\sigma_3 + 2h(r)d\tau)^2 \right]$$
 So This in States of the States of t

SU(2) invariant 1-forms (θ,φ,χ: angles of S³)

$$\sigma_1 = -\sin \chi d\theta + \cos \chi \sin \theta d\phi$$

$$\sigma_2 = \cos \chi d\theta + \sin \chi \sin \theta d\phi$$

$$\sigma_3 = d\chi + \cos \theta d\phi$$

U(1) shift: $\chi \to \chi + \text{const.}$

Superradiant instability of MPAdS

We focus specifically on the following perturbation.

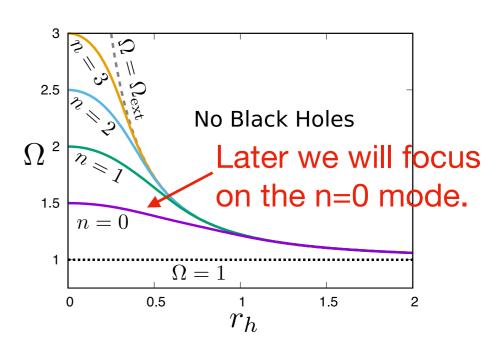
$$\delta g_{\mu\nu} dx^\mu dx^\nu = \frac{r^2}{4} \delta \alpha(r) (\sigma_1^2 - \sigma_2^2)$$
 [Murata]

This gives a decoupled perturbation equation:

$$\delta\alpha'' + \left(\frac{g'}{g} + \frac{3+5r^2}{r(1+r^2)}\right)\delta\alpha' + \frac{8}{(1+r^2)g}\left(\frac{\beta-2}{r^2\beta} + \frac{2\beta h^2}{(1+r^2)g}\right)\delta\alpha = 0$$

Onset of superradiant instability:

We search the onset frequency Ω , at which this equation is solved by nontrivial normal modes $\delta \alpha \neq 0$.



Isometry breaking by the perturbation

This perturbation breaks the U(1) shift $\chi \to \chi + {\rm const.}$ (because $\sigma_1^2 - \sigma_2^2$ is not invariant by this shift).

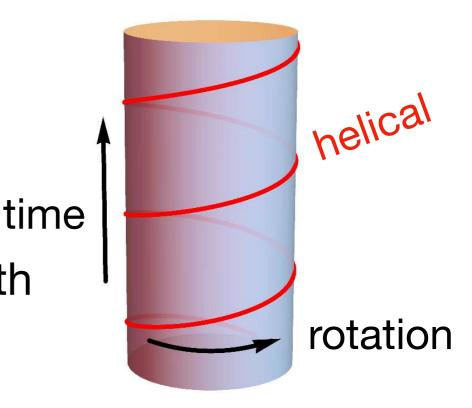
$$\sigma_1 = -\sin \chi d\theta + \cos \chi \sin \theta d\phi$$

$$\sigma_2 = \cos \chi d\theta + \sin \chi \sin \theta d\phi$$

$$\sigma_3 = d\chi + \cos \theta d\phi$$

There will be a new BH solution with

$$R_{\tau} \times U(2) \rightarrow R_{\tau} \times SU(2)$$



We will see that R_{τ} is indeed a **helical isometry.**

Black resonators in AdS₅

Outline

Black resonators branch off from the onset of the superradiant instability.

Cohomogeneity-1 black resonator solutions can be constructed in 5D by imposing the SU(2) isometry.

Photonic black resonators can be also obtained in Einstein-Maxwell theory.

Black resonators (in AdS₄)

Black holes with a single Killing vector field: black resonators

Óscar J. C. Dias,^{1,*} Jorge E. Santos,^{2,†} and Benson Way^{2,‡}

¹STAG research centre and Mathematical Sciences, University of Southampton, UK

²DAMTP, Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, UK

We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that contain only a single Killing vector field. These solutions, which we coin *black resonators*, link

[Dias-Santos-Way 1505.04793]

Black holes with a helical isometry were first constructed in 4D and named black resonators.

These are time-periodic black holes.

5D cohomogeneity-1 black resonator

We consider a metric ansatz with the SU(2) isometry.

The Einstein eq. reduce to ODEs for (f,g,h,α,β) .

$$ds^{2} = -(1+r^{2})f(r)d\tau^{2} + \frac{dr^{2}}{(1+r^{2})g(r)}$$
 [TI-Murata]
$$+ \frac{r^{2}}{4} \left[\alpha(r)\sigma_{1}^{2} + \frac{1}{\alpha(r)}\sigma_{2}^{2} + \beta(r)(\sigma_{3} + 2h(r)d\tau)^{2} \right]$$

MPAdS: $\alpha(r)=1 \Rightarrow \text{black resonator: } \alpha(r)\neq 1$

Boundary conditions

 $r \rightarrow r_h$: BH horizon f=g=0 with $h(r_h)=0$

r→∞: asymp. AdS: (f,g,α,β) →1 with $h(\infty)=\Omega$

Time periodic metric

If we change the frame so that $\bar{h}(\infty)=0$ (AdS boundary is static), the metric is **explicitly time periodic.**

$$dt = d\tau, \ d\bar{\chi} = d\chi + 2\Omega d\tau, \ \bar{h}(r) = h(r) - \Omega$$

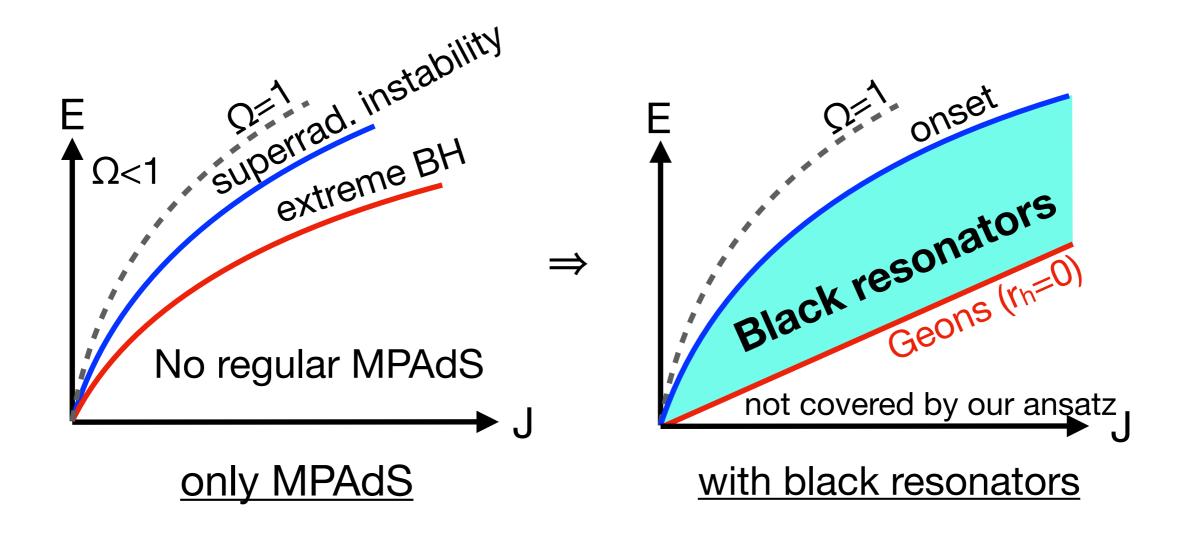
$$ds^{2} = -(1+r^{2})f(r)dt^{2} + \frac{dr^{2}}{(1+r^{2})g(r)} + \frac{r^{2}}{4} \left[\frac{\alpha(r)^{2}+1}{2\alpha(r)} (\bar{\sigma}_{1}^{2} + \bar{\sigma}_{2}^{2}) + \frac{\alpha(r)^{2}-1}{2\alpha(r)} \left(\cos(4\Omega t)(\bar{\sigma}_{1}^{2} - \bar{\sigma}_{2}^{2}) + 2\sin(4\Omega t)\bar{\sigma}_{1}\bar{\sigma}_{2} \right) + \beta(r)(\bar{\sigma}_{3} + 2\bar{h}(r)dt)^{2} \right]$$

So, this black hole is time-periodic: black resonator

There is a helical Killing vector $K = \partial_{\tau} = \partial_t + \Omega \partial_{\bar{\chi}/2}$

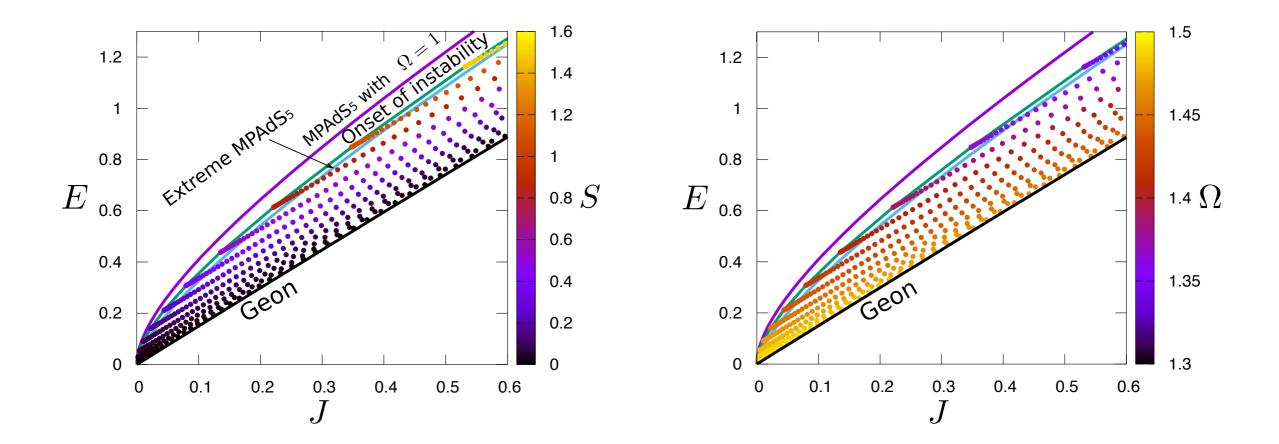
(E,J) phase diagram

Black resonators cover the region where the MPAdS solution is super-extreme.



Remarks

- Entropy→0 for the regular horizonless geon (r_h→0).
 (BH's shape is time dependent but area is constant.)
- All black resonators we constructed have $\Omega>1$.



Photonic black resonators

Black resonators with time-periodic electromagnetic waves can also be obtained in Einstein-Maxwell theory.

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left[R - 2\Lambda - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

$$ds^{2} = -(1+r^{2})f(r)d\tau^{2} + \frac{dr^{2}}{(1+r^{2})g(r)} + \frac{r^{2}}{4} \left[\alpha(r)\sigma_{1}^{2} + \alpha(r)^{-1}\sigma_{2}^{2} + \beta(r)(\sigma_{3} + 2h(r)d\tau)^{2}\right]$$

Gauge field $A = \gamma(r)\sigma_1 (= \gamma(r) \left[\cos(2\Omega t)\bar{\sigma}_1 + \sin(2\Omega t)\bar{\sigma}_2\right])$

[TI-Murata]

Superradiant instability of black resonators

Outline

The black resonators, having Ω >1, are subject to further superradiant instability.

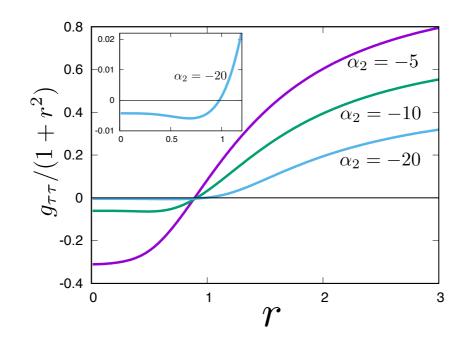
Studying linear perturbations of black resonators is viable for the cohomogeneity-1 metric.

Here I focus on scalar field perturbation (we also studied Maxwell and gravitational perturbations).

Instability of black resonators

The norm of the helical Killing vector satisfies $K^2>0$ (i.e. spacelike) near the AdS boundary if $\Omega>1$.

$$K^2 = g_{\tau\tau} \to -r^2(1-\Omega) \quad (r \to \infty)$$



And there is a **theorem** that says that such solutions should be **unstable.** [Green-Hollands-Ishibashi-Wald]

Scalar field perturbation

Consider a probe scalar field: $\Box \Phi = 0$

The scalar field can be expanded by the Wigner-D matrices, which are spherical harmonics on S³.

$$D_{mk}^{j}(\theta, \phi, \chi) \qquad j = 0, 1/2, 1, 3/2, \dots, m = -j, -j + 1, \dots, j, k = -j, -j + 1, \dots, j.$$

$$\Phi(\tau, r, \theta, \phi, \chi) = e^{-i\omega\tau} \sum_{|k| \le j} \phi_k(r) D_k(\theta, \phi, \chi)$$

We suppress (j,m) indices: $D_k \equiv D_{mk}^j$ Modes with different m decouple.

ODEs with mode coupling

In the MPAdS (α =1), c_k =0: the modes with different k decouple because of the U(1) isometry.

For black resonators, **different k modes couple** because they do not have the U(1) isometry.

$$L_k \phi_k + c_{k-1} \phi_{k-2} + c_{k+1} \phi_{k+2} = 0$$

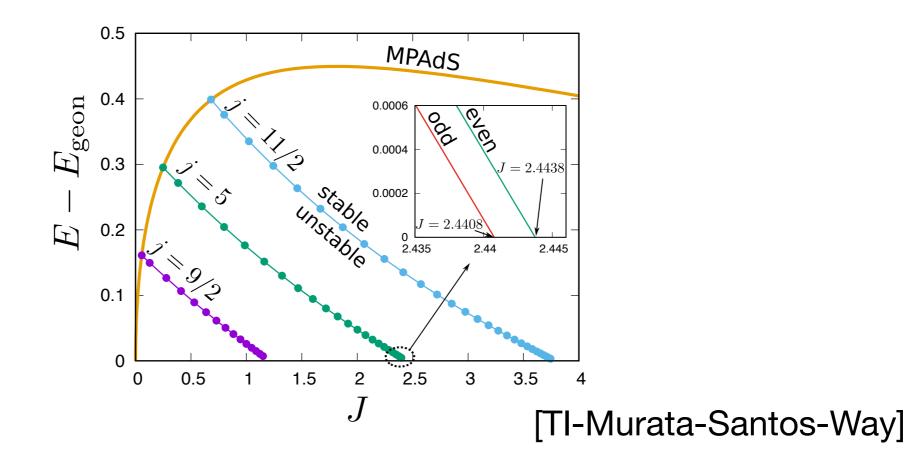
$$c_k = -\frac{\epsilon_k \epsilon_{k+1}}{r^2} \left(\alpha - \frac{1}{\alpha} \right)$$

$$L_{k} = (1+r^{2})g\frac{d^{2}}{dr^{2}} + \left[\frac{1+r^{2}}{2}\left(\frac{f'}{f} + \frac{g'}{g} + \frac{\beta'}{\beta}\right) + \frac{3+5r^{2}}{r}\right]g\frac{d}{dr} - \frac{\epsilon_{k}^{2} + \epsilon_{k+1}^{2}}{r^{2}}\left(\alpha + \frac{1}{\alpha}\right) - \frac{4k^{2}}{r^{2}\beta} + \frac{(\omega - 2kh)^{2}}{(1+r^{2})f}$$

Instability of black resonators

We solved the coupled equations for ϕ_k and identified their instability in the black resonator background.

More and more parameter regions are unstable for larger-j perturbations.



Summary

We studied the superradiant instability of 5D Myers-Perry black hole with equal angular momenta.

We constructed **cohomogeneity-1 black resonators** in 5D asymptotically AdS space.

We studied **linear perturbations of black resonators** for the cohomogeneity-1 metric.