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Quantum gravity

• Path integral formulation
• We may define quantum gravity in the path integral 

formulation 
• a crucial problem is which geometry should be integrated 

over or which saddles should be summed

• Complex geometry
• Like usual quantum field theory, we could make the path 

integral convergent by working with complex geometry
• A canonical example is no-boundary proposal by Hartle-

Hawking, where the universe starts from hemi-sphere 
and approaches to dS space



Allowable complex geometry

• A complexified metric of Sd+1

• Let us assume that the universe starts from nothing at
and approaches to dSd+1 for 

• There is a family of complex geometry labeled by n

• A criteria of D-dim. allowable geometry is

ds
2 = ℓ

2

dS(θ
′(u)2du2 + cos2 θ(u)dΩ2

d
)

[Louko-Sorkin ’97;Kontsevich-Segal ’21;Witten ’21]

Re

(

√

detggi1j1 . . . giqjqFi1...iqFj1...jq

)

> 0, 0 ≤ q ≤ D

Only geometry with n=-1,0 are allowable, which 
reproduces the geometry of Hartle-Hawking

cos θ(u = 0) = 0

u = 0
u → ∞

θ(u = 0) = (n+ 1/2)π (n ∈ Z)



Semi-classical saddles via holography

• Holographic method
• We determine the saddles in gravity path integral via holography and provide 

their geometrical interpretation
• As a concrete example, we analyze 3d pure gravity with positive/negative 

cosmological constant from dual 2d CFT described by Liouville field theory

• Our results
• For positive cosmological constant, we reproduce Witten’s result as desired
• For negative cosmological constant, we find that the saddles in the gravity 

path integral correspond to geometries with three time-like directions
• The same results can be obtained from mini-superspace approach to gravity



The plan of this talk

• Introduction
• Holographic duality
• Dual CFT description
• Mini-superspace approach
• Conclusion



Holographic duality



AdS/CFT correspondence

• Poincare coordinates (boundary at           )

• Map between AdS bulk fields and CFT operators

• GKP-Witten relation ’98
• Gravity scattering amplitudes ó CFT correlation functions 

ds
2 =

ℓ
2

AdS

z2

⎛

⎝dz
2
− dt

2 +
d−1
∑

j=1

(dzj)2

⎞

⎠

AdS bulk fields CFT operators

ZAdS [φ(z = 0, x) = φ0] =
〈

e
∫
ddxφ0(x)O(x)

〉



dS/CFT correspondence

• A way to describe gravity theory on dS
space is utilizing wave functional of 
universe

• The wave functional is identified as 
generating functional of correlation 
functions in dual CFT

Correlators are computed 
by dual Euclidean CFT

[Maldacena ’03]

<latexit sha1_base64="sjmJbE1/NPzGxMY1V6o2h86We08="></latexit>
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Gaberdiel-Gopakumar duality for AdS3

• A version of Gaberdiel-Gopakumar duality

• The simplest case with N=2

Higher-spin AdS3 gravity 
(≃SL(N) CS theory) with 
matters at the classical limit

2d coset model with 
large central charge

[Castro-Gopakumar-Gutperle-Raeymaekers ’12; Gaberdiel-Gopakumar ’12] 
(see [Gaberdiel-Gopakumar ’11] for original proposal)

Spins of gauge fields

Einstein gravity on AdS3 with 
matters at the classical limit

2d coset model with
large central charge

The coset describes analytic continuation of 
Virasoro-minimal model, which was shown to 
reduce to Liouville theory [Creutzig-YH ’21]



Central charge and the level of coset model

• A version of Gaberdiel-Gopakumar duality

• Comparison of symmetry algebra

Einstein gravity on AdS3 with 
matters at the classical limit

2d coset model with 
large central charge

• Near the boundary of AdS3 there 
appears Virasoro symmetry with central 
charge [Brown-Henneaux ’86]

• The central charge of the coset is

• To have large central charge, we have to set

c = 1−
6

(k + 2)(k + 3)

k → −3−
6

c
+O(c−2)

c =
3ℓAdS

2G
→ ∞



Analytic continuation from AdS3 to dS3

• Formally we can move from AdS3 to dS3 by replacing
• Gaberdiel-Gopakumar duality becomes

• Comparison of central charge [Strominger ’01]

• Comparison of partition functions
• We compute the partition functions of dual CFT at the large central charge limit 

and find agreement with gravity counterparts

Einstein gravity on dS3 with 
matters at the classical limit

2d coset model with 
imaginary central charge

ℓAdS → −iℓdS

[YH-Nishioka-Takayanagi-Taki ’22; ’22] 

c = 1−
6

(k + 2)(k + 3)
= −ic(g), c(g) =

3ℓdS
2G

→ ∞ k → −3 + i
6

c(g)
+O(c(g)−2)



Dual CFT description



Liouville field theory

• The action of Liouville field theory is 

• The large central charge limit is realized by

• The wave functional or partition function is 
related to 2-pt. function
• Here               kept finite (and set             for simplicity)

c = 1 + 6(b+ b
−1)2 b

−2
=

c

6
−

13

6
+ · · ·

SL =
1

2π

∫

d2z
√
g

[

∂φ∂̄φ+
Q

4
Rφ+ πµe2bφ

]

, Q = b+ 1/b

⟨Vα(z1)Vα(z2)⟩ =

∫
Dφe−SLe2α(φ(z1)+φ(z2))

η = αb η → 0



Semi-classical saddles for CFT 2-pt. function

• Once           is a solution to the EOM                                , then the same is 
true for 

• Semi-classical expression of 2-pt. function can be read off from its 
exact result as

∂∂̄φc = 2πµb2eφcφ(0)
c

φ(n)
c

= φ(0)
c

+ 2πin

The integer n labels different complex saddles of Liouville field theory 

[Harlow-Maltz-Witten ’11]

1

e−πi/b2
− eπi/b

2
=

∑

n=0,1,...∞

e
(2n+1)πi/b2

for Re b
−2

> 0

e
πi/b2

− e
−πi/b2 =

∑

n=−1,0

(−1)ne(2n+1)πi/b2 for Re b
−2

< 0

lim
η=αb→0

⟨Vα(z1)Vα(z2)⟩ ∝

(φc = 2bφ)



Semi-classical saddles of dS gravity

• The wave functional for dS3 can be described by the limit of 2-pt. 
function

• The parameter b can be written in terms of gravity parameters as

• The wave functional for for dS3 can be decomposed as

ΨdS = lim
η=αb→0

⟨Vα(z1)Vα(z2)⟩

b
−2

= −i
c(g)

6
−

13

6
+ · · · = −i

ℓdS

4G
−

13

6
+ · · ·

ΨdS ∼

∑

n=−1,0

(−1)neS
(n)
GH/2+iI , S

(n)
GH =

(2n+ 1)πℓdS
2G

Re b
−2

< 0

[Chen-YH-Taki-Uetoko ’23;’23]

We should pick up saddle points of dS gravity with n=-1,0 
and the result reproduces the allowable geometry of Witten



Semi-classical saddles of AdS gravity

• The partition function for AdS3 can be described by the limit of 2-pt. 
function

• The parameter b can be written in terms of gravity parameters as

• The partition function for AdS3 can be decomposed as

ZAdS = lim
η=αb→0

⟨Vα(z1)Vα(z2)⟩

b
−2

=
c

6
−

13

6
+ · · · =

ℓAdS

4G
−

13

6
+ · · · Re b

−2
> 0

Which geometry corresponds to the saddle point labeled by  
n and why the sum is taken over n=0,1,…?

ZAdS ∼

∑

n=0,1,2,...

ΘnZ0 , Θn = e

ℓAdS

2G
nπi

,



Geometry corresponding to saddle

• Ansatz for the geometry

• We assume that the manifold truncates at               and approaches to Euclidean 
AdS3 for  

• There is a family of complex geometry labeled by n

• Geometrical interpretation

• Euclidean AdS3 for 1 < 𝑢 and 3-sphere with 3 time directions for 0 ≤ 𝑢 ≤ 1
• The 3-sphere can be generated by a large gauge transformation in Chern-Simons 

formulation of gravity and the phase factor can be reproduced

ds
2 = ℓ

2

AdS(θ
′(u)2du2 + sinh2 θ(u)dΩ2)

sinh θ(u = 0) = 0

u = 0
u → ∞

θ(u = 0) = nπi (n ∈ Z)

θ = nπi(1− u) (0 ≤ u ≤ 1), θ = u− 1 (1 < u)



Mini-superspace approach



Mini-superspace approach

• We want to compute path integral for AdS3 partition 
function with I[g] as Einstein-Hilbert action

• We consider a reduced model with the following 
ansatz of metric

• The path integral reduce to

• We set                     by fixing a gauge and integrate over N 
along a contour 

ZAdS[h] =

∫
Dge−I[g]

ds
2 = ℓ

2

AdS

[

N(r)2dr2 + a(r)2dΩ2
]

Z =

∫

C

dN

∫

Da(r) exp

[

ℓAdS

2G

∫ 1

0

dr N

(

1

N2

d2a

dr2
+ a

2 + 1

)]

(0 ≤ r ≤ 1)

N(r) = N

C

r = 0r = 1

cf. [Feldbrugge-Lehners-Turok’17;Di Tucci-Heller-Lehners’20]



Reduce to one-parameter integration

• The EOM for a(r) is
• A solution subject to boundary conditions

is

• The path integral is approximated by

• The contour for N is given by a set of 
Lefschetz thimbles

d2a/dτ2 −N2a = 0

a(0) = 0, a(1) = a1

ā
(N)(r) =

a1

sinhN
sinh(Nr)

Z =

∫
C

dNe−I[N ], I[N ] = −
ℓdS

2G
(N + a21 cothN)

r = 0r = 1
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Lefschetz thimbles

• How to determine Lefschetz thimbles
1. Compute the saddle points by solving

2. Find out steepest descents from the saddle point satisfying 
as denoted by

• How to find the contour
1. Start from a natural contour, i.e., along the positive real axis.
2. Deform the contour such as to be given by the sum of Lefschetz thimbles 

∂I[N ]/∂N = 0

N+
n

= nπi+ ln

(

a1 +

√

a21 + 1

)

, N−

n
= nπi− ln

(

a1 +

√

a21 + 1

)
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Evaluation of path integral

• Each contribution from the saddle point is

• For large a1, a series of contributions          vanishes
• The path integral is given by the sum as

• We can change the radial coordinate as

• Reproduce the previous radius coordinate for 
• Reproduce the geometry from ansatz for 
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±
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∼ e

nπiℓAdS

2G (2a1)
±

ℓAdS

2G

Z
−

n

Z ∼

∞∑

n=0

Zn

+
∼

∞∑

n=0

e

nπiℓAdS

2G Reproduce the previous result

Nr → R(r) = −nπi(1− r)q + ln(2a1)r
q

q = 1

q → ∞

R(r)

ln(2a1)

−nπi

[Chen-YH-Taki-Uetoko ’24;’24]

cf. [Lehners’21]



Conclusion



Summary & Future problems

• We determined the saddles in gravity path integral via holography and 
examined their geometrical interpretation
• For positive cosmological constant, we reproduce the allowable complex 

geometry of Witten
• For negative cosmological constant, the saddle points in gravity path 

integral correspond to geometries with three time-like directions
• The same results can be obtained from mini-superspace approach
• The feature may be specific to 3d pure gravity and it is important to 

examine other cases



Thank you for your attention


