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Quantum gravity

* Path integral formulation
* We may define quantum gravity in the path integral
formulation

* a crucial problem is which geometry should be integrated
over or which saddles should be summed

* Complex geometry

* Like usual quantum field theory, we could make the path
integral convergent by working with complex geometry

* A canonical example is no-boundary proposal by Hartle-
Hawking, where the universe starts from hemi-sphere
and approaches to dS space




Allowable complex geometry

[Louko-Sorkin "97;Kontsevich-Segal '21;Witten '21]

* A complexified metric of S*1
ds? = (35 (0 (u)*du® + cos® 0(u)d3)

* Let us assume that the universe starts from nothingat u = 0
and approaches to dS,,; for u — oo

* There is a family of complex geometry labeled by n
cos(u=0)=0 == Gu=0)=(n+1/2)7 (n € Z)
e A criteria of D-dim. allowable geometry is

Only geometry with n=-1,0 are allowable, which

—
reproduces the geometry of Hartle-Hawking




Semi-classical saddles via holography

* Holographic method

 We determine the saddles in gravity path integral via holography and provide
their geometrical interpretation

* As a concrete example, we analyze 3d pure gravity with positive/negative
cosmological constant from dual 2d CFT described by Liouville field theory

e Our results

* For positive cosmological constant, we reproduce Witten’s result as desired

* For negative cosmological constant, we find that the saddles in the gravity
path integral correspond to geometries with three time-like directions

* The same results can be obtained from mini-superspace approach to gravity



The plan of this talk

* Introduction

* Holographic duality

* Dual CFT description

* Mini-superspace approach
* Conclusion



Holographic duality



AdS/CFT correspondence

T
 Poincare coordinates (boundary at z = 0) o)
d—1
ds® = 6‘22—(218 (dz2 —dt* + Z(dzj)2> —_| ¢(2,7)
= z=0 z
* Map between AdS bulk fields and CFT operators
AdS bulk fields CFT operators
o(z,x) O(z)
" " s N
* GKP-Witten relation 98 [ <,Ulo($")> Mgy (o ([ #000)) }

* Gravity scattering amplitudes < CFT correlation functions

Zaas [9(z = 0,z) = ¢ = <ef dd$¢0(w)0(:v)>



dS/CFT correspondence

[Maldacena '03]

* A way to describe gravity theory on dS
space is utilizing wave functional of
universe

W aslhs do] = / DgDoexpiSlg. d <

with g=h, 0 =¢g at t =t
. .. . Correlators are computed
* The wave functional is identified as by dual Euclidean CFT

generating functional of correlation —
functions in dual CFT

Pas[gpo] = <eXP (/ dd$¢0($)o($))>




Gaberdiel-Gopakumar duality for AdS,

[Castro-Gopakumar-Gutperle-Raeymaekers '12; Gaberdiel-Gopakumar '12]
(see [Gaberdiel-Gopakumar ’11] for original proposal)

* A version of Gaberdiel-Gopakumar duality

Higher-spin AdS; gravity
(==SL(N) CS theory) with <)
matters at the classical limit

2d coset model with SU(N)x x SU(N)q
large central charge SU(N)k+1

Spins of gauge fields s =2,3,..., N
* The simplest case with N=2

Einstein gravity on AdS; with
matters at the classical limit

2d coset model with  SU(2), x SU(2),
large central charge SU(2)k11

()

The coset describes analytic continuation of
Virasoro-minimal model, which was shown to
reduce to Liouville theory [Creutzig-YH "21]



Central charge and the level of coset model

* A version of Gaberdiel-Gopakumar duality

Einstein gravity on AdS; with ) 2d coset model with  SU(2); x SU(2),
matters at the classical limit large central charge SU(2)k+1

 Comparison of symmetry algebra

* Near the boundary of AdS, there * The central charge of the coset is
appears Virasoro symmetry with central 6
_ ’ c=1-—
charge [Brown-Henneaux ’86] (k+2)(k + 3)

* To have large central charge, we have to set

k— —3— g +0(c™?)




Analytic continuation from AdS, to dS,

[YH-Nishioka-Takayanagi-Taki ’22; '22]
* Formally we can move from AdS; to dS; by replacing (aqs — —ilyg
* Gaberdiel-Gopakumar duality becomes

Einstein gravity on dS; with 2d coset model with SU(2), x SU(2),
matters at the classical limit imaginary central charge  SU(2)x41

* Comparison of central charge [Strominger’01]

6 . 3¢ 6
—1-— — _icle) o) — 28dS : 9
c=1 205 3) i\, c S 0 |y —3 ZC(Q) O(C(Q) )

* Comparison of partition functions

* We compute the partition functions of dual CFT at the large central charge limit
and find agreement with gravity counterparts



Dual CFT description



Liouville field theory

* The action of Liouville field theory is

S, 1 d*z\/g [aqs(% + %qu + 7T,u626¢] , Q=b+1/b

:27'('

* The large central charge limit is realized by
13

c=1+4+6(b+b")? == b‘2:§ :

* The wave functional or partition function is
related to 2-pt. function

 Here n = ab kept finite (and set n — 0 for simplicity)

<V0é(zl)va(22)> = /D¢6_SL62Q(¢(21)+¢(22))




Semi-classical saddles for CFT 2-pt. function

[Harlow-Maltz-Witten '11]

« Once 4\ is a solution to the EOM 09¢. = 2rub’e® , then the same is
true for o0 = ¢{”) + 2min (¢ = 2b0)

==) The integer n labels different complex saddles of Liouville field theory

* Semi-classical expression of 2-pt. function can be read off from its
exact result as

_—

6m'/b2 . e—m'/b2 _ Z (_1)n6(2n—|—1)7m'/b2 for Re b=2 < 0
lim (Vo (21)Val(z2)) ¢ — n=-10
n=ab— 1 .72
= Z e2nt)mi/b" £ Re b2 >

n=0,1,...00

e—mi/b? _ omi/b?

~—



Semi-classical saddles of dS gravity

* The wave functional for dS; can be described by the limit of 2-pt.

function
Uas = lim  (Va(21)Va(22))

n=ab—0

* The parameter b can be written in terms of gravity parameters as
(9) 13 las 13

b_2:_,c___ cee = —4 _

"6 "6 "1G " 6

* The wave functional for for dS; can be decomposed as

4+ mmmp Reb ?<0

(2n + 1)mlys

Tas ~ Y (~D)eSen/2HT S =

n=—1,0

We should pick up saddle points of dS gravity with n=-1,0

and the result reproduces the allowable geometry of Witten
[Chen-YH-Taki-Uetoko '23;’23]



Semi-classical saddles of AdS gravity

* The partition function for AdS; can be described by the limit of 2-pt.

function
Zpaas = lim (Vi (21)Va(22))

n=ab—0

* The parameter b can be written in terms of gravity parameters as

o_c BB 0 faes 13 p
b—6 6+ _4G 6+ —) Reb“ >0

* The partition function for AdS; can be decomposed as

£ads

ZAdS ~ § @nZOa @n = e 26 "M )

Which geometry corresponds to the saddle point labeled by
n and why the sum is taken over n=0,1,...”



Geometry corresponding to saddle

e Ansatz for the geometry
ds® = 03 45(0' (v)?du® + sinh? 0(u)dQ?)

* We assume that the manifold truncates at © = 0 and approaches to Euclidean
AdS;for u — oo

* There is a family of complex geometry labeled by n
sinhf(u=0)=0 == H(u=0)=nmi(n€Z)
 Geometrical interpretation
0=nmi(l —u) (0<u<l),f=u—1(1<u)

* Euclidean AdS; for 1 < u and 3-sphere with 3 time directionsfor0 <u <1

 The 3-sphere can be generated by a large gauge transformation in Chern-Simons
formulation of gravity and the phase factor can be reproduced



Mini-superspace approach



Mini-superspace approach
cf. [Feldbrugge-Lehners-Turok’17;Di Tucci-Heller-Lehners’20]

* We want to compute path integral for AdS; partition
function with /[g] as Einstein-Hilbert action

Zaaslh] = /DQG_I[Q] —~—

* We consider a reduced model with the following
ansatz of metric

ds* = 13 49 [N(r)2d7“2 + a(T)QdQﬂ 0<r<1)

* The path integral reduce to r=1 r=0

Z = /dN/D eAsfldN i£+a+1
al\r eXp T N2d’r2

« We set N(r) = N by fixing a gauge and integrate over N
along a contour C



Reduce to one-parameter integration

N~

* The EOM for a(r) is d°a/dr* — N?a =0

* A solution subject to boundary conditions
a(0) =0,a(l) = aq is

. :1 r=20
aN) (r) = sir?}iN sinh(NT) g
e .
* The path integral is approximated by T -
. s —
Z:/dNe NI I[N] = —=22(N 4 a? coth N) -
C 2G ;‘0& 7+
* The contour for N is given by a set of I .
Lefschetz thimbles — £ .



Lefschetz thimbles

* How to determine Lefschetz thimbles

1. Compute the saddle points by solving 0I[N]/ON =0

qu:nm%—ln(al%—\/a%%—l), Nn_:mri—ln(al%—\/a%%—l)

2. Find out steepest descents from the saddle point satisfying
Im I[N] = 0 as denoted by 7+

. N /L N
R IRAE RS %
o3

 How to find the contour
1. Start from a natural contour, i.e., along the positive real axis.
2. Deform the contour such as to be given by the sum of Lefschetz thimbles

C=>meodad =21 T



Evaluation of path integral

[Chen-YH-Taki-Uetoko '24;’24]

* Each contribution from the saddle point is

nmilaAds £Aads
Zni ~ e 2G (2a1)i 2G

* For large a,, a series of contributions Z_~ vanishes
* The path integral is given by the sum as

nil
~N Z, T~ —2¢“ == Reproduce the previous result
P

 We can change the radial coordinate as
N7 — R(r) = —nmi(1 — )7 + In(2a; )71
g (T) ’mm( T) i n( al)r cf. [Lehners’21]
* Reproduce the previous radius coordinate for ¢ =1
* Reproduce the geometry from ansatz for ¢ — oo

e |
7=
\& 7
Z \.7()? j———
J
v | R
In(2a;)

v



Conclusion



Summary & Future problems

* We determined the saddles in gravity path integral via holography and
examined their geometrical interpretation

* For positive cosmological constant, we reproduce the allowable complex
geometry of Witten

* For negative cosmological constant, the saddle points in gravity path
integral correspond to geometries with three time-like directions

* The same results can be obtained from mini-superspace approach

* The feature may be specific to 3d pure gravity and it is important to
examine other cases



Thank you for your attention



