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Figure 3 | Temperature-doping phase diagram of YBCO. The phase
diagram contains at least four different ordered phases, including
antiferromagnetism (grey), superconductivity (yellow), CDW (pink) and
pseudogap (blue) regimes. The pseudogap line (dashed line) at T∗ marks
the boundary between the strange metal and even more anomalous
regimes. Red circles represent the second-order nematic transition
temperature Tτ determined by the present in-plane torque magnetometry.
For comparison, the pseudogap temperatures determined by other probes
are also plotted. Purple circles, orange triangles and blue circles are T∗

reported by ultrasound spectroscopy25, polarized neutron scattering27, and
Nernst coefficients22, respectively. Magenta triangles represent the
formation temperature of the short-range CDW, TCDW, reported by
resonant X-ray measurements6,7. Green circles are the temperature below
which the time reversal symmetry is broken, reported by the polar
Kerr effect29.

is, the extension of the pseudogap temperature to T → 0 suggests
a nematic QCP. The second-order nature of the phase transition
line, in general, implies the presence of critical fluctuations near the
transition line, and in an extended regime around the QCP onemay
expect significant quantumcritical fluctuations.Hence it is tempting
to consider that the nematic quantum fluctuations influence the
superconductivity as well as the strange metallic behaviour in the
normal state of cuprates.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Figure 4 | Induced nematicity and the scaling behaviour. a, The excess
anisotropy below T∗, "η(T)≡η(T)−η(T∗), of YBCO with different hole
concentrations p, plotted as a function of the background anisotropy η(T∗)
at different values of T/T∗. The solid lines represent the linear fit for "η(T)
at each value of T/T∗. The magenta symbols show the induced nematicity
in the limit of η(T∗)→0. b, The excess anisotropy "η(T) normalized by
the value at T/T∗=0.7 plotted as a function of T/T∗. All the data collapse
into a universal curve, indicating a scaling relation.
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the boundary between the strange metal and even more anomalous
regimes. Red circles represent the second-order nematic transition
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Nernst coefficients22, respectively. Magenta triangles represent the
formation temperature of the short-range CDW, TCDW, reported by
resonant X-ray measurements6,7. Green circles are the temperature below
which the time reversal symmetry is broken, reported by the polar
Kerr effect29.
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maximum value of 8.75 K, which corresponds to the compo-
sition of pure 2M-WS2. When the carrier concentration further
increases to 1.56 × 1021 cm−1, the Tc decreases to 4.37 K.

Conclusion
In this contribution, we report the synthesis and superconduc-
tivity of p-type doped 2M-WS2. The W1−xMoxS2 samples are
successfully synthesized by a solid state reaction. All samples
show p-type conductivity. With the increase of Mo-doping, the
carrier concentration increases from 1.42 × 1021 cm−3 to 1.56 ×
1021 cm−3. Meanwhile, the Tc decreases from 8.75 K to 4.37 K.
The carrier concentration and Tc data are summarized in a
phase diagram which shows a typical dome-like shape. These
results provide an insight into the structure and electronic
state of 2M-WS2.
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In most iron-based superconductors, superconductivity
emerges on the verge of a long-range antiferromagnetically
ordered state1, which is a common feature to many

unconventional superconductors2,3 including the cuprates and
heavy-fermion materials. It has been shown that the antiferro-
magnetic order in the iron-pnictide materials accompanies or
follows the tetragonal-to-orthorhombic structural transition at Ts.
In striking contrast, the structurally simplest FeSe exhibits a
high TsE90K but no magnetic order appears at lower tempera-
tures4–7, and still its ground state is an unconventional
superconducting state with TcE9K (refs 8–10). This material is
also intriguing in that in the form of one-unit-cell-thick films a
very high Tc (up to 109K) has been reported recently11–13, which
is likely associated with a carrier-doping effect14,15 from the
substrate. In bulk FeSe, a significant electronic anisotropy is
found below Ts in the nonmagnetic orthorhombic phase, which is
often called a nematic state9,10,16,17. In the nematic phase, very
small Fermi surfaces with strong deviations from the first-
principles calculations have been observed10,18,19, and the
occurrence of superconductivity with such small Fermi energies
is quite unusual, implying that the system is deep in the crossover
regime between the weak-coupling Bardeen–Cooper–Schrieffer
and strong-coupling Bose–Einstein–condensate limits10.

In addition to these distinct electronic characteristics
of FeSe, remarkable properties have been reported under high
pressure20–27. First of all, the initial study on powder samples has
shown that the relatively low TcE9K at ambient pressure can be
enhanced by more than fourfold toB37K underB8GPa, pushing
it into the class of high-Tc superconductors21. More recent studies
under better hydrostatic pressure conditions revealed a complex
temperature–pressure (T–P) phase diagram featured by a
suppression of Ts around 2GPa, a sudden development of static
magnetic order above B1GPa (ref. 23), and an enhancement of Tc
in a three-plateau process24, that is, TcB10(2)K for 0–2GPa,
TcB20(5)K for 3–5GPa, and TcB35(5)K for 6–8GPa. The first
jump of Tc from B10 to B20K seems to coincide with the
suppression of the nonmagnetic nematic state and the development
of the long-range magnetic order at Tm evidenced by mSR
measurements22. The observation that both Tc and Tm increase
with pressure in the pressure range 1–2.5GPa has been taken as
evidence for the cooperative promotion of superconductivity by the
static magnetic order22. Such a scenario, however, does not fit
into the general scope of iron-based superconductors, in which the
optimal superconductivity is realized when the long-range
magnetic order is close to collapse1,28. This issue remains unclear
unless the fate of magnetic order at Tm under higher pressures is
sorted out. Due to the technical limitations of probing small-
moment magnetic order above 3GPa, this task only becomes
possible very recently when a clear signature at Tm is visible in the
resistivity23,25,26 of high-quality FeSe single crystals29. We also note
that more recently the pressure-induced magnetic order in these
single crystals has been confirmed below Tm by Mössbauer30 and
nuclear magnetic resonance (NMR) measurements31.

Here by performing the high-pressure resistivity r(T)
measurements up to B15 GPa on high-quality single crystals,
we construct for bulk FeSe the most comprehensive T–P phase
diagram mapping out the explicit evolutions with pressure of Ts,
Tc and Tm. We uncover a previously unknown dome-shaped
Tm(P), having two end points situated on the boundaries
separating the three plateaus of Tc(P). Our results thus
provide compelling evidence linking intimately the sudden
enhancement of Tc to 38 K to the suppression of long-rang
magnetic order. This highlights a competing nature between
magnetic order and high-Tc superconductivity in the phase
diagram of FeSe, which is a key material among the iron-based
superconductors.

Results
Low-pressure region. The tetragonal-orthorhombic structure
transition at TsE90K for bulk FeSe (blue square in Fig. 1) is
manifested as a slight upturn in resistivity, which can be taken as
a signature to track down the evolution of Ts with pressure. Our
resistivity r(T) data measured with a self-clamped piston–
cylinder cell (PCC) up to B1.9GPa are shown in Fig. 2a. As
can be seen, Ts is suppressed progressively to below 50K at
B1.5GPa, above which the anomaly at Ts becomes poorly
defined. Meanwhile, a second anomaly manifested as a more
profound upturn in r(T) emerges at TmB20K and moves up
steadily with pressure. In light of the recent high-pressure mSR,
Mössbauer, and NMR studies22,30,31, this anomaly at Tm
corresponds to the development of long-range magnetic order.
We also note that in this magetically ordered state below Tm, the
orthorhombic structure similar to the one (space group Cmma) in
the nematic phase has been reported recently30,31. Ts and Tm
seem to cross around B2GPa. In this pressure range, the
superconducting transition temperature Tc (defined as the zero-
resistivity temperature) first increases and then decreases slightly
before rising again. This features a small dome-shaped Tc(P)
peaked at B1.2 GPa (Fig. 1), which roughly coincides with the
pressure where the long-range magnetic order at Tm starts to
emerge. These results in this relatively low-pressure range are in
general consistent with those reported previously23,25,26.

High-pressure region. To further track down the evolution of
Tm, we turn to r(T) measurements in cubic anvil cells (CACs)
that can maintain a quite good hydrostaticity up to B15GPa
(refs 32–34). Figure 2b–d displays the r(T) data measured in two
self-clamped CACs and one constant-loading CAC (see Methods
for experimental details). In line with the results of PCC in
Fig. 2a, the sudden upturn is clearly visible at Tm in both
measurements in the pressure range up to B2.5GPa (Figs 2b,d
and 3a,b), above which the upturn anomaly disappears and
instead a kink appears in r(T) followed by a gradual drop before
reaching the superconducting transition (Figs 2b,d and 3c,d). Our
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Here, we introduce the linear axion field �i and the complex scalar field � to realize an
impurity e↵ect and a superconducting order, respectively. Also, the electromagnetic field is
given F = dA and F 2 denotes FMNFMN . We provide the equations of motion in Appendix
A.
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When considering the nonlinear term given by the second term in (2), the ghost-free
condition of the Maxwell field may limit the validity of the analysis under consideration. In
this work, we only care about the linear stability of the Maxwell field. We allow the fluc-
tuation around a background as FMN = F bg

MN
+ �FMN , where F bg

MN
is the background
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given F = dA and F 2 denotes FMNFMN . We provide the equations of motion in Appendix
A.

Now, we take a suitable ansatz for a hairy black brane solution as follows:

ds2 = �U(r)e2(W (r)�W (1))dt2 +
r2

L2

�
dx2 + dy2

�
+

dr2

U(r)

�i = (x, y) , A = At(r)dt , � = �(r) , (3)

where a trivial phase of the complex scalar has been taken, so �(r) is a real function. Then,
one can derive equations of motion with this ansatz given in Appendix A. The equations of
motion of this system admit the RN black brane solution given by

U(r) =
r2
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�

2L2

2
�

ML4

r
+

Q2L6

4r2
, At(r) = µL�

QL3

r
, �(r) = W (r) = 0 . (4)

For the RN brack brane, the mass parameter can be written by

M =
r3
h

L6
+

L2Q2

4rh
�

2rh
2L2

, (5)

where rh is the location of the horizon. The hawking temperature and the entropy density
are

T =
1

4⇡L2

✓
3rh �

L8Q2

4r3
h

�
2L4

2rh

◆
, s =

r2
h

4GL2
. (6)

When considering the nonlinear term given by the second term in (2), the ghost-free
condition of the Maxwell field may limit the validity of the analysis under consideration. In
this work, we only care about the linear stability of the Maxwell field. We allow the fluc-
tuation around a background as FMN = F bg

MN
+ �FMN , where F bg

MN
is the background
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Figure 3. Condensate for three values of µ/� and � = 2, q = 3, which is the case of Figure 2(a).
The color here matches the color of the lines in Figure 2(a). In other words, we compute condensate
along the vertical line(temperature) standing on the colored-lines in Figure 2(a)

Euclidean action(SE) by analytically continuing to Euclidean time(⌧)

t = �i⌧ , SE = �iSren , (2.41)

where Sren consists of four-dimensional Sbulk and three dimensional Sbdy:

Sren ⌘ SHHH + S | {z }
⌘Sbulk

+SGH + Sct| {z }
⌘Sbdy

. (2.42)

The first three terms are defined in (2.1), (2.3) and (2.2) respectively, and the last term is

the counter term for holographic renormalisation [6]:

Sct =

Z
d3x

p
��

✓
� 4

L
+

L

2
r I ·r I +

�
⌘1(�

⇤nM@M�+ �nM@M�⇤) + ⌘2|�|2/L
�◆

,

(2.43)

which cancels the divergence of the bulk action. To fix �(1) on the boundary we choose

(⌘1, ⌘2) = (0,�1) while to fix �(2) we choose (⌘1, ⌘2) = (1, 1). nM = (0, 0, 0,
p

G(r)) is an

outgoing normal vector. See appendix A for more details.

Let us first consider the Euclidean bulk action

SE

bulk
= �

Z
d4x

p
�g Lbulk , (2.44)

which defines Lbulk. It can be computed following [6]. The xx-component of the Einstein

equation gives a useful relation:

Gxx =
1

2
r2(Lbulk �R) +

1

2
�2 , (2.45)
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Figure 4. Electric conductivity(�) for three cases �/µ = 0.1, 1 and 1(or µ = 0)

(a) �/µ = 0.1. Data points and fitting curves (3.32)
The purple line fits well too.

(b) �/µ = 1. Data points and fitting curves (3.33)

Figure 5. Near ! = 0 of Figure 4(a) and (b). T/Tc = the same color as Figure 4. Dots are the
same data in Figure 4 and solid lines are Drude-like fits.

The comparison of (3.28) and (3.30) yields

 
� ↵T

↵̄T ̄T

!
=

 
� iG11

!

i(G11µ�G12)

!
i(G11µ�G21)

!
� i(G22�G22(!=0)+µ(�G12�G21+G11µ))

!

!
. (3.31)

3.3 Electric/thermal/thermoelectric conductivites

Figure 4 shows examples of electric optical conductivities(�(!)) for three cases of �/µ:

�/µ = 0.1, 1 and, 1(µ = 0). This choice of parameters also corresponds to the cases with

the green(�/µ = 0.1), red(�/µ = 1), and blue(�/µ = 1) lines in Figure 2(a) and 3. The

color of curves represents temperature ratio, T/Tc, where Tc is the critical temperature.

The numerical values of temperature ratio are shown in the caption. In particular the

dotted black curve8 is for the temperature above Tc, which is in metal phase and the red

curve corresponds to the critical temperature (in practice, it is slightly higher than the

8There is also a dashed grey curve in (c) at µ = 0. It is not distinguishable from the red and dotted
black curves in Figure 4 and 7, but distinguishable in Figure 8.
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1 Introduction

2 Holographic Model coupled to Non-linear Electro-
dynamics

In this section, we propose a model which is appropriate to describe a nontrivial phase
structure. We start with the following action:
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Here, we introduce the linear axion field �i and the complex scalar field � to realize an
impurity e↵ect and a superconducting order, respectively. Also, the electromagnetic field is
given F = dA and F 2 denotes FMNFMN . We provide the equations of motion in Appendix
A.

Now, we take a suitable ansatz for a hairy black brane solution as follows:

ds2 = �U(r)e2(W (r)�W (1))dt2 +
r2

L2

�
dx2 + dy2

�
+

dr2

U(r)

�i = (x, y) , A = At(r)dt , � = �(r) , (3)

where a trivial phase of the complex scalar has been taken, so �(r) is a real function. Then,
one can derive equations of motion with this ansatz given in Appendix A. The equations of
motion of this system admit the RN black brane solution given by

U(r) =
r2

L2
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2L2

2
�

ML4

r
+

Q2L6

4r2
, At(r) = µL�

QL3

r
, �(r) = W (r) = 0 . (4)

For the RN brack brane, the mass parameter can be written by

M =
r3
h

L6
+

L2Q2

4rh
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2L2

, (5)

where rh is the location of the horizon. The hawking temperature and the entropy density
are

T =
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When considering the nonlinear term given by the second term in (2), the ghost-free
condition of the Maxwell field may limit the validity of the analysis under consideration. In
this work, we only care about the linear stability of the Maxwell field. We allow the fluc-
tuation around a background as FMN = F bg

MN
+ �FMN , where F bg

MN
is the background
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Figure 3. Condensate for three values of µ/� and � = 2, q = 3, which is the case of Figure 2(a).
The color here matches the color of the lines in Figure 2(a). In other words, we compute condensate
along the vertical line(temperature) standing on the colored-lines in Figure 2(a)

Euclidean action(SE) by analytically continuing to Euclidean time(⌧)

t = �i⌧ , SE = �iSren , (2.41)

where Sren consists of four-dimensional Sbulk and three dimensional Sbdy:

Sren ⌘ SHHH + S | {z }
⌘Sbulk

+SGH + Sct| {z }
⌘Sbdy

. (2.42)

The first three terms are defined in (2.1), (2.3) and (2.2) respectively, and the last term is

the counter term for holographic renormalisation [6]:

Sct =

Z
d3x

p
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� 4
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+
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2
r I ·r I +

�
⌘1(�

⇤nM@M�+ �nM@M�⇤) + ⌘2|�|2/L
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,

(2.43)

which cancels the divergence of the bulk action. To fix �(1) on the boundary we choose

(⌘1, ⌘2) = (0,�1) while to fix �(2) we choose (⌘1, ⌘2) = (1, 1). nM = (0, 0, 0,
p

G(r)) is an

outgoing normal vector. See appendix A for more details.

Let us first consider the Euclidean bulk action

SE

bulk
= �

Z
d4x

p
�g Lbulk , (2.44)

which defines Lbulk. It can be computed following [6]. The xx-component of the Einstein

equation gives a useful relation:

Gxx =
1

2
r2(Lbulk �R) +

1

2
�2 , (2.45)
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Figure 4. Electric conductivity(�) for three cases �/µ = 0.1, 1 and 1(or µ = 0)

(a) �/µ = 0.1. Data points and fitting curves (3.32)
The purple line fits well too.

(b) �/µ = 1. Data points and fitting curves (3.33)

Figure 5. Near ! = 0 of Figure 4(a) and (b). T/Tc = the same color as Figure 4. Dots are the
same data in Figure 4 and solid lines are Drude-like fits.

The comparison of (3.28) and (3.30) yields

 
� ↵T

↵̄T ̄T
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i(G11µ�G12)

!
i(G11µ�G21)

!
� i(G22�G22(!=0)+µ(�G12�G21+G11µ))
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. (3.31)

3.3 Electric/thermal/thermoelectric conductivites

Figure 4 shows examples of electric optical conductivities(�(!)) for three cases of �/µ:

�/µ = 0.1, 1 and, 1(µ = 0). This choice of parameters also corresponds to the cases with

the green(�/µ = 0.1), red(�/µ = 1), and blue(�/µ = 1) lines in Figure 2(a) and 3. The

color of curves represents temperature ratio, T/Tc, where Tc is the critical temperature.

The numerical values of temperature ratio are shown in the caption. In particular the

dotted black curve8 is for the temperature above Tc, which is in metal phase and the red

curve corresponds to the critical temperature (in practice, it is slightly higher than the

8There is also a dashed grey curve in (c) at µ = 0. It is not distinguishable from the red and dotted
black curves in Figure 4 and 7, but distinguishable in Figure 8.
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Quantum phase transition

condensation increases as temperature is decreasing. Therefore, the momentum relaxation
parameter can enhance the scalar condensation. We observed similar phenomena in di↵er-
ent model(cite: magneto conductance paper) in which the momentum relaxation parameter
has similar role of lowering temperature.

RN AdS

Hairy BH
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Figure 2: The phase diagram of the system in canonical ensemble with �2 = �0.2.

The summarized phase diagram of system in canonical ensemble is shown in Figure 2.
To make all parameters are dimensionless, we scaled temperature and charge density by
momentum relaxation parameter �. In the figure, the system is divide by two region. At
high temperature with large charge density, the normal Reissner-Nordstrom AdS black hole
geometry without scalar field is energetically favored from the free energy calculation. On
the other hand, at low temperature with small charge densty, the hairy black hole solution
with scalar hair becomes physical one. As we discussed before, the impurity (or momentum
relaxation parameter) enhances the scalar condensation, the transition temperature between
RN AdS black hole and symmetry broken solution increases as the momentum relaxation
parameter � is increasing which is same e↵ect with decreasing Q/�2 in Figure 2.

On interesting thing in the figure is that if charge density is large enough to the impu-
rity density, the hairy black hole solution cannot be a physical solution in all temperature
therefore the phase boundary is closed at zero temperature with finite charge density. This
implies there exist quantum phase transition point in the phase diagram. This cannot be
observed in previous studies[cite other works] which do not include �2 parameter. The e↵ect
of �2 on the phase diagram is shown in Figure 3(a).

In Figure 3(a), each line denotes phase boundary between hairy black hole and RN AdS
black hole. As �2 closes to zero, the critical charge density of quantum phase transition
increase and it seems to go to infinity when �2 = 0, see Figure 3(b).

2.2 Quantum phase transition

In this section we show that this system undergoes the phase transition at zero temperature.
This phenomenon can be regarded as a quantum phase transition. In order to show this,
we find a parameter region where the black brane does not carry any hairy configuration at
zero temperature through the Breitenlohner-Freedman (BF) bound argument.

In order to find the phase boundary, we will take the probe approximation. The equation

4

1 Electric conductivity for model 2

1.1 Backgraound geometry

We start from Einstein-Maxwell-dilaton action with scalar axion,

Stot = S0 + Sint + Sbd, (1)

where

S0 =

Z
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p
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and the interaction term is
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Here, � is linear axion field which will give momentum relaxation e↵ect on the boundary

theory. The equations of motion of the action (1) are
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz

ds2 = �U(r)e2W (r)�2W (1)dt2 +
dr2

U(r)
+ r2(dx2

+ dy2)

�I
= (�x, �y), � = �(r), A = At(r)dt. (5)

1.2 DC conductivity

The DC conductivity can be written in terms of the horizon data from standard technique

as

�DC =
�
1 + �2�

2
h

�
+

Q2

�2
, (6)

where �h is horizon value of scalar field and Q is conserved U(1) charge. The first two

terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is

automatically satisfied when the field is linear in spatial coordinate.

• metric ansatz
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terms in (6) is independent of charge density. This term is understood as a consequence

of the electron-hole pair creation by charge conjugation symmetry(�ccs). The last term is

proportional to the charge density and inverse of the impurity density which refers current

dissipation by impurity or lattice(�diss)[1406.1659, Blake]. Then, DC conductivity can be

written as

�DC = �ccs + �diss. (7)
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where L is a Lagrangian density of (1) and the equation of motion for the axion field is
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1 Introduction

2 Holographic Model coupled to Non-linear Electro-
dynamics

In this section, we propose a model which is appropriate to describe a nontrivial phase
structure. We start with the following action:
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Here, we introduce the linear axion field �i and the complex scalar field � to realize an
impurity e↵ect and a superconducting order, respectively. Also, the electromagnetic field is
given F = dA and F 2 denotes FMNFMN . We provide the equations of motion in Appendix
A.

Now, we take a suitable ansatz for a hairy black brane solution as follows:

ds2 = �U(r)e2(W (r)�W (1))dt2 +
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�i = (x, y) , A = At(r)dt , � = �(r) , (3)

where a trivial phase of the complex scalar has been taken, so �(r) is a real function. Then,
one can derive equations of motion with this ansatz given in Appendix A. The equations of
motion of this system admit the RN black brane solution given by
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where rh is the location of the horizon. The hawking temperature and the entropy density
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When considering the nonlinear term given by the second term in (2), the ghost-free
condition of the Maxwell field may limit the validity of the analysis under consideration. In
this work, we only care about the linear stability of the Maxwell field. We allow the fluc-
tuation around a background as FMN = F bg

MN
+ �FMN , where F bg
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is the background
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gauge field following (3). Since we only consider fluctuations that do not change the
charge density (48). ), we set �Frt = 0. Then the quadratic action for the fluctuations
is �

1
4

�
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�F 2. Thus the linear-ghost-free condition in terms of our

background ansatz is
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> 0 . (7)

This expression appears in the dual current density (48). A similar situation happens in
[previous paper], and such a ghost case gives rise to a negative DC conductivity. In the
RN black brane case, the situation is ghost-free due to the vanishing scalar. However, the
situation becomes nontrivial in the hair black brane case. We will discuss this issue later.

3 BF bound Analysis

In this section, we study which parameter space allows a phase transition between the RN-
AdS black brane and the hairy black brane. To find the possible parameter space, the
Breitenlohner-Freedman (BF) bound is usually used. Thus we apply the argument to this
system.

We start with the extremal black brane whose metric is
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The BF bound of a scalar field in (d + 1)-dimensional AdS spacetime with a radius L is
given by m2

BF
= �d2/4L2, so the mass of the scalar field m2 is always greater than �9/4L2

for the asymptotically stable AdS4. In addition, a stability condition near horizon is
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where the dimensionless mass and charge, m̃ and ẽ, are given in (28). The violation of this
condition could give rise to a hairy configuration.

Now, let us consider the behavior of the horizon-stability function H. In the small charge
or large relaxation limit of H and the opposite limit, the behavior of H is
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Super Dome Condition
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and m2L2 > 2e2L2 + 6�2 � 6 · 24�4 �

3

2
(15)

Also, we require that one extremum at a positive p should be less than �1/4.

dH

dp
|p=pi = 0 (16)

A positive real P1

H(p1) < �
1

4
(17)

4 Discussion

Appdendix

A. Equations of Motion

The general form of the equations of motion is
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The covariant derivative is given by DN� = (rN � ieAN)�, where e is the eigenvalue
of the electric charge operator. We adopt the coordinate indices as xM = (xµ, r) and
xµ = (t, xi) = (t, x, y). Choosing a gauge rMAM = Ar = 0, the scalar field equation can be
written as follows:
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The equations of motion become
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where at = eW (1)At.
It is natural to take a scaling of fields and parameters for a numerical method. The

proposed scaling is summarized as follows:
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where the tilde denotes dimensionless quantities. An e�cient way to deal with (24)-(27)
with this scaling is to take L = 1 and regard all quantities and fields as dimensionless ones.
This action admits the RN black brane solution with the linear axion. The solution is given
by
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Also, we require that one extremum at a positive p should be less than �1/4.

dH

dp
|p=pi = 0 (24)

A positive real P1

H(p1) < �
1

4
(25)

•Results
Some examples of BF bound analysis(21) are shown in Figure 1.
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Figure 1: BF bound analysis without(a) and with(b) non-linear electrodynamics interac-
tions. We fix the scalar charge to e = 1 in both case.

Figure 1 (a) shows BF bound analysis for the conventional holographic superconductor
model[HHH]. Shaded region in the figure denotes the region of the violating AdS2 BF bound
near zero temperature. As shown in the figure, near horizon BF bound always violated when
m2 = �2, therefore corresponding superconducting phase always exist near zero temperature
in all charge density range.

This phenomena changes drastically in the presence of the non-linear electrodynamic
coupling, see Figure 1 (b). Due to the coupling �2 and �4, near horizon BF bound does
not violating for large value of Q/2. It indicates possibility of the zero temperature phase
transition between the normal phase and the superconducting phase. Moreover, there exists
a finite range in Q/2 for certain range of scalar mass. For example if the scalar mass is

4

m2L2 > �
3

4
and m2L2 > 2e2L2 + 6�2 � 6 · 24�4 �

3

2
(23)

Also, we require that one extremum at a positive p should be less than �1/4.

dH

dp
|p=pi = 0 (24)

A positive real P1

H(p1) < �
1

4
(25)

•Results
Some examples of BF bound analysis(21) are shown in Figure 1.

(a) �2 = �4 = 0

0.00 0.05 0.10 0.15 0.20

-2.0

-1.5

-1.0

-0.5

0.0

/κ2

m2

(b) �2 = 6, �4 = 1.5

Figure 1: BF bound analysis without(a) and with(b) non-linear electrodynamics interac-
tions. We fix the scalar charge to e = 1 in both case.

Figure 1 (a) shows BF bound analysis for the conventional holographic superconductor
model[HHH]. Shaded region in the figure denotes the region of the violating AdS2 BF bound
near zero temperature. As shown in the figure, near horizon BF bound always violated when
m2 = �2, therefore corresponding superconducting phase always exist near zero temperature
in all charge density range.

This phenomena changes drastically in the presence of the non-linear electrodynamic
coupling, see Figure 1 (b). Due to the coupling �2 and �4, near horizon BF bound does
not violating for large value of Q/2. It indicates possibility of the zero temperature phase
transition between the normal phase and the superconducting phase. Moreover, there exists
a finite range in Q/2 for certain range of scalar mass. For example if the scalar mass is
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where the dimensionless mass and charge, m̃ and ẽ, are given in (28). The violation of this
condition could give rise to a hairy configuration.

Now, let us consider the behavior of the horizon-stability function H. In the small charge
or large relaxation limit of H and the opposite limit, the behavior of H is

H =

⇢
m̃

2

3 (p ! 1)
m

2

6 �
ẽ
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t
= µ̃�

q̃

r̃
,' = W̃ = 0 . (29)

4

Horizon regularity condition + Source free condition for scalar field

directly. There is one more comment on the BF bound analysis. In our numerical experience,
the phase transition density at zero temperature is not exactly the same as BF bound
analysis. The actual transition points are usually located inside the boundary of BF bound
analysis in Figure 1.

In this section, we numerically solve the equations of motion(10) with proper boundary
conditions. We want to construct background geometry with a black hole horizon. Then,
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Notice that the solution of the coupled nonlinear equations (10) - (13) can be classified by
the horizon value of the scalar field �h and the derivative of the U(1) gauge field a0

h
only.

4.1 Superconducting Dorm

In this section, we discuss the non-linear electrodynamic interaction e↵ect on the transi-
tion between the normal phase and the hairy black hole phase, which is interpreted as a
superconducting phase in the boundary system.

The most simple solution of the model is the vanishing scalar field solution. In the
absence of the scalar field, all the non-linear electrodynamic interaction terms vanish and
the action becomes that of the usual Einstein-Maxwell-Axion system. The solution of this
system is nothing but the RN black brane solution with momentum relaxation given by

U(r) = r2 �
2

2
�

M

r
+

Q
2

4r2
,

At(r) = µ�
Q

r
,

�(r) = W (r) = 0 . (27)

For the RN black brane, the mass parameter can be written by
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•Asymptotic Lifshitz condition

For z < 2, the equations of motion admits asymptotic Lifshitz geometry with following
conditions.
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This condition (37) implies z = 1 when �0 = 0 which is asymptotic AdS geometry.
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directly. There is one more comment on the BF bound analysis. In our numerical experience,
the phase transition density at zero temperature is not exactly the same as BF bound
analysis. The actual transition points are usually located inside the boundary of BF bound
analysis in Figure 1.

In this section, we numerically solve the equations of motion(10) with proper boundary
conditions. We want to construct background geometry with a black hole horizon. Then,
we can impose the metric function and the gauge field vanishes at the black hole horizon as
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(rh), (25)

and the scalar field �(r) and wapping factor W (r) go to finite value. For the numerical
calculation, we fix 16⇡G = L = 1 from now.

Together with (25) and the equations of motion (10)-(13), we get near horizon behavior
of each field by the regularity condition as

at(rh) = 0, a0
t
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Notice that the solution of the coupled nonlinear equations (10) - (13) can be classified by
the horizon value of the scalar field �h and the derivative of the U(1) gauge field a0

h
only.

4.1 Superconducting Dorm

In this section, we discuss the non-linear electrodynamic interaction e↵ect on the transi-
tion between the normal phase and the hairy black hole phase, which is interpreted as a
superconducting phase in the boundary system.

The most simple solution of the model is the vanishing scalar field solution. In the
absence of the scalar field, all the non-linear electrodynamic interaction terms vanish and
the action becomes that of the usual Einstein-Maxwell-Axion system. The solution of this
system is nothing but the RN black brane solution with momentum relaxation given by

U(r) = r2 �
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For the RN black brane, the mass parameter can be written by
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with the following condition for z < 2;

e4�2
0(m
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2
0)� 12�4(z � 1)2z4 = 0. (35)

Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!
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where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
This condition (35) implies z = 1 when �0 = 0 which is asymptotic AdS geometry. If

we substitute parameters used in Figure 3 (d) and the asymptotic value of the scalar field
in Figure 5(a) into (35), then we get the dynamical critical exponent z0 ⇠ 1.077. Figure
6 shows that the numerical solution of the gauge field(solid line) matches this dynamical
critical exponent very well(red dashed line).

(a)

Figure 6: Log-log plot for the Numerical solution of A(t)(solid line) and At(r) ⇠ A0rz0(red
dashed line). z0 is determined by parameters in Figure 3 (d) and the condition in (35).
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Figure 3 | Temperature-doping phase diagram of YBCO. The phase
diagram contains at least four different ordered phases, including
antiferromagnetism (grey), superconductivity (yellow), CDW (pink) and
pseudogap (blue) regimes. The pseudogap line (dashed line) at T∗ marks
the boundary between the strange metal and even more anomalous
regimes. Red circles represent the second-order nematic transition
temperature Tτ determined by the present in-plane torque magnetometry.
For comparison, the pseudogap temperatures determined by other probes
are also plotted. Purple circles, orange triangles and blue circles are T∗

reported by ultrasound spectroscopy25, polarized neutron scattering27, and
Nernst coefficients22, respectively. Magenta triangles represent the
formation temperature of the short-range CDW, TCDW, reported by
resonant X-ray measurements6,7. Green circles are the temperature below
which the time reversal symmetry is broken, reported by the polar
Kerr effect29.

is, the extension of the pseudogap temperature to T → 0 suggests
a nematic QCP. The second-order nature of the phase transition
line, in general, implies the presence of critical fluctuations near the
transition line, and in an extended regime around the QCP onemay
expect significant quantumcritical fluctuations.Hence it is tempting
to consider that the nematic quantum fluctuations influence the
superconductivity as well as the strange metallic behaviour in the
normal state of cuprates.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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maximum value of 8.75 K, which corresponds to the compo-
sition of pure 2M-WS2. When the carrier concentration further
increases to 1.56 × 1021 cm−1, the Tc decreases to 4.37 K.

Conclusion
In this contribution, we report the synthesis and superconduc-
tivity of p-type doped 2M-WS2. The W1−xMoxS2 samples are
successfully synthesized by a solid state reaction. All samples
show p-type conductivity. With the increase of Mo-doping, the
carrier concentration increases from 1.42 × 1021 cm−3 to 1.56 ×
1021 cm−3. Meanwhile, the Tc decreases from 8.75 K to 4.37 K.
The carrier concentration and Tc data are summarized in a
phase diagram which shows a typical dome-like shape. These
results provide an insight into the structure and electronic
state of 2M-WS2.
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In most iron-based superconductors, superconductivity
emerges on the verge of a long-range antiferromagnetically
ordered state1, which is a common feature to many

unconventional superconductors2,3 including the cuprates and
heavy-fermion materials. It has been shown that the antiferro-
magnetic order in the iron-pnictide materials accompanies or
follows the tetragonal-to-orthorhombic structural transition at Ts.
In striking contrast, the structurally simplest FeSe exhibits a
high TsE90K but no magnetic order appears at lower tempera-
tures4–7, and still its ground state is an unconventional
superconducting state with TcE9K (refs 8–10). This material is
also intriguing in that in the form of one-unit-cell-thick films a
very high Tc (up to 109K) has been reported recently11–13, which
is likely associated with a carrier-doping effect14,15 from the
substrate. In bulk FeSe, a significant electronic anisotropy is
found below Ts in the nonmagnetic orthorhombic phase, which is
often called a nematic state9,10,16,17. In the nematic phase, very
small Fermi surfaces with strong deviations from the first-
principles calculations have been observed10,18,19, and the
occurrence of superconductivity with such small Fermi energies
is quite unusual, implying that the system is deep in the crossover
regime between the weak-coupling Bardeen–Cooper–Schrieffer
and strong-coupling Bose–Einstein–condensate limits10.

In addition to these distinct electronic characteristics
of FeSe, remarkable properties have been reported under high
pressure20–27. First of all, the initial study on powder samples has
shown that the relatively low TcE9K at ambient pressure can be
enhanced by more than fourfold toB37K underB8GPa, pushing
it into the class of high-Tc superconductors21. More recent studies
under better hydrostatic pressure conditions revealed a complex
temperature–pressure (T–P) phase diagram featured by a
suppression of Ts around 2GPa, a sudden development of static
magnetic order above B1GPa (ref. 23), and an enhancement of Tc
in a three-plateau process24, that is, TcB10(2)K for 0–2GPa,
TcB20(5)K for 3–5GPa, and TcB35(5)K for 6–8GPa. The first
jump of Tc from B10 to B20K seems to coincide with the
suppression of the nonmagnetic nematic state and the development
of the long-range magnetic order at Tm evidenced by mSR
measurements22. The observation that both Tc and Tm increase
with pressure in the pressure range 1–2.5GPa has been taken as
evidence for the cooperative promotion of superconductivity by the
static magnetic order22. Such a scenario, however, does not fit
into the general scope of iron-based superconductors, in which the
optimal superconductivity is realized when the long-range
magnetic order is close to collapse1,28. This issue remains unclear
unless the fate of magnetic order at Tm under higher pressures is
sorted out. Due to the technical limitations of probing small-
moment magnetic order above 3GPa, this task only becomes
possible very recently when a clear signature at Tm is visible in the
resistivity23,25,26 of high-quality FeSe single crystals29. We also note
that more recently the pressure-induced magnetic order in these
single crystals has been confirmed below Tm by Mössbauer30 and
nuclear magnetic resonance (NMR) measurements31.

Here by performing the high-pressure resistivity r(T)
measurements up to B15 GPa on high-quality single crystals,
we construct for bulk FeSe the most comprehensive T–P phase
diagram mapping out the explicit evolutions with pressure of Ts,
Tc and Tm. We uncover a previously unknown dome-shaped
Tm(P), having two end points situated on the boundaries
separating the three plateaus of Tc(P). Our results thus
provide compelling evidence linking intimately the sudden
enhancement of Tc to 38 K to the suppression of long-rang
magnetic order. This highlights a competing nature between
magnetic order and high-Tc superconductivity in the phase
diagram of FeSe, which is a key material among the iron-based
superconductors.

Results
Low-pressure region. The tetragonal-orthorhombic structure
transition at TsE90K for bulk FeSe (blue square in Fig. 1) is
manifested as a slight upturn in resistivity, which can be taken as
a signature to track down the evolution of Ts with pressure. Our
resistivity r(T) data measured with a self-clamped piston–
cylinder cell (PCC) up to B1.9GPa are shown in Fig. 2a. As
can be seen, Ts is suppressed progressively to below 50K at
B1.5GPa, above which the anomaly at Ts becomes poorly
defined. Meanwhile, a second anomaly manifested as a more
profound upturn in r(T) emerges at TmB20K and moves up
steadily with pressure. In light of the recent high-pressure mSR,
Mössbauer, and NMR studies22,30,31, this anomaly at Tm
corresponds to the development of long-range magnetic order.
We also note that in this magetically ordered state below Tm, the
orthorhombic structure similar to the one (space group Cmma) in
the nematic phase has been reported recently30,31. Ts and Tm
seem to cross around B2GPa. In this pressure range, the
superconducting transition temperature Tc (defined as the zero-
resistivity temperature) first increases and then decreases slightly
before rising again. This features a small dome-shaped Tc(P)
peaked at B1.2 GPa (Fig. 1), which roughly coincides with the
pressure where the long-range magnetic order at Tm starts to
emerge. These results in this relatively low-pressure range are in
general consistent with those reported previously23,25,26.

High-pressure region. To further track down the evolution of
Tm, we turn to r(T) measurements in cubic anvil cells (CACs)
that can maintain a quite good hydrostaticity up to B15GPa
(refs 32–34). Figure 2b–d displays the r(T) data measured in two
self-clamped CACs and one constant-loading CAC (see Methods
for experimental details). In line with the results of PCC in
Fig. 2a, the sudden upturn is clearly visible at Tm in both
measurements in the pressure range up to B2.5GPa (Figs 2b,d
and 3a,b), above which the upturn anomaly disappears and
instead a kink appears in r(T) followed by a gradual drop before
reaching the superconducting transition (Figs 2b,d and 3c,d). Our
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Figure 1 | Temperature–pressure phase diagram of bulk FeSe. The
structural (Ts, blue), magnetic (Tm, green), and superconducting transition
temperatures (Tc, red and black) as a function of hydrostatic pressure in
high-quality single crystals determined by anomalies in resistivity r(T)
measured in the PCC (open circles), clamp-type CAC (closed circles), and
constant-loading type CAC (closed squares). Tc values determined from the
ac magnetic susceptibility (w(T)) measurements in the clamp-type CAC are
also shown (solid triangles). The magnetic phase is most likely a spin
density wave (SDW) phase. Colour shades for the nematic, SDW, and
superconducting (SC) states are guides to the eyes.
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Phase Diagram

Black hole horizon at r = rh

directly. There is one more comment on the BF bound analysis. In our numerical experience,
the phase transition density at zero temperature is not exactly the same as BF bound
analysis. The actual transition points are usually located inside the boundary of BF bound
analysis in Figure 1.

In this section, we numerically solve the equations of motion(10) with proper boundary
conditions. We want to construct background geometry with a black hole horizon. Then,
we can impose the metric function and the gauge field vanishes at the black hole horizon as

U(r)
���
r!rh

⇠ (r � rh)U
0(rh)

at(r)
���
r!rh

⇠ (r � rh)a
0
t
(rh), (25)

and the scalar field �(r) and wapping factor W (r) go to finite value. For the numerical
calculation, we fix 16⇡G = L = 1 from now.

Together with (25) and the equations of motion (10)-(13), we get near horizon behavior
of each field by the regularity condition as

at(rh) = 0, a0
t
(rh) = a0

h

�(rh) = �h, �0(rh) =
2�h(2m2

� �2 a02h + 2�4 a04h )
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� 22
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2
h
a04
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�
. (26)

Notice that the solution of the coupled nonlinear equations (10) - (13) can be classified by
the horizon value of the scalar field �h and the derivative of the U(1) gauge field a0

h
only.

4.1 Superconducting Dorm

In this section, we discuss the non-linear electrodynamic interaction e↵ect on the transi-
tion between the normal phase and the hairy black hole phase, which is interpreted as a
superconducting phase in the boundary system.

The most simple solution of the model is the vanishing scalar field solution. In the
absence of the scalar field, all the non-linear electrodynamic interaction terms vanish and
the action becomes that of the usual Einstein-Maxwell-Axion system. The solution of this
system is nothing but the RN black brane solution with momentum relaxation given by

U(r) = r2 �
2

2
�

M

r
+

Q
2

4r2
,

At(r) = µ�
Q

r
,

�(r) = W (r) = 0 . (27)

For the RN black brane, the mass parameter can be written by

M = r3
h
+

Q
2

4rh
�

2rh
2

, (28)

6

with the following condition for z < 2;

e4�2
0(m

2�2
0 + 2z � 2) + e2(z � 1)z2(1 + �2�

2
0)� 12�4(z � 1)2z4 = 0. (35)

Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2 ⇠ �e2W (r)U(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2)

= �
A2

0e
2�2

0

z � 1
r2zdt2 +

dr2

r2
+ r2(dx2 + dy2), (36)

where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
This condition (35) implies z = 1 when �0 = 0 which is asymptotic AdS geometry. If

we substitute parameters used in Figure 3 (d) and the asymptotic value of the scalar field
in Figure 5(a) into (35), then we get the dynamical critical exponent z0 ⇠ 1.077. Figure
6 shows that the numerical solution of the gauge field(solid line) matches this dynamical
critical exponent very well(red dashed line).

(a)

Figure 6: Log-log plot for the Numerical solution of A(t)(solid line) and At(r) ⇠ A0rz0(red
dashed line). z0 is determined by parameters in Figure 3 (d) and the condition in (35).
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Figure 7: Phase diagram with m2 = �1, �2 = 6, �4 = 1.5 and e = 1. The numerical
calculations are not well solved in the dark gray region.
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Figure 3 | Temperature-doping phase diagram of YBCO. The phase
diagram contains at least four different ordered phases, including
antiferromagnetism (grey), superconductivity (yellow), CDW (pink) and
pseudogap (blue) regimes. The pseudogap line (dashed line) at T∗ marks
the boundary between the strange metal and even more anomalous
regimes. Red circles represent the second-order nematic transition
temperature Tτ determined by the present in-plane torque magnetometry.
For comparison, the pseudogap temperatures determined by other probes
are also plotted. Purple circles, orange triangles and blue circles are T∗

reported by ultrasound spectroscopy25, polarized neutron scattering27, and
Nernst coefficients22, respectively. Magenta triangles represent the
formation temperature of the short-range CDW, TCDW, reported by
resonant X-ray measurements6,7. Green circles are the temperature below
which the time reversal symmetry is broken, reported by the polar
Kerr effect29.

is, the extension of the pseudogap temperature to T → 0 suggests
a nematic QCP. The second-order nature of the phase transition
line, in general, implies the presence of critical fluctuations near the
transition line, and in an extended regime around the QCP onemay
expect significant quantumcritical fluctuations.Hence it is tempting
to consider that the nematic quantum fluctuations influence the
superconductivity as well as the strange metallic behaviour in the
normal state of cuprates.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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maximum value of 8.75 K, which corresponds to the compo-
sition of pure 2M-WS2. When the carrier concentration further
increases to 1.56 × 1021 cm−1, the Tc decreases to 4.37 K.

Conclusion
In this contribution, we report the synthesis and superconduc-
tivity of p-type doped 2M-WS2. The W1−xMoxS2 samples are
successfully synthesized by a solid state reaction. All samples
show p-type conductivity. With the increase of Mo-doping, the
carrier concentration increases from 1.42 × 1021 cm−3 to 1.56 ×
1021 cm−3. Meanwhile, the Tc decreases from 8.75 K to 4.37 K.
The carrier concentration and Tc data are summarized in a
phase diagram which shows a typical dome-like shape. These
results provide an insight into the structure and electronic
state of 2M-WS2.
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In most iron-based superconductors, superconductivity
emerges on the verge of a long-range antiferromagnetically
ordered state1, which is a common feature to many

unconventional superconductors2,3 including the cuprates and
heavy-fermion materials. It has been shown that the antiferro-
magnetic order in the iron-pnictide materials accompanies or
follows the tetragonal-to-orthorhombic structural transition at Ts.
In striking contrast, the structurally simplest FeSe exhibits a
high TsE90K but no magnetic order appears at lower tempera-
tures4–7, and still its ground state is an unconventional
superconducting state with TcE9K (refs 8–10). This material is
also intriguing in that in the form of one-unit-cell-thick films a
very high Tc (up to 109K) has been reported recently11–13, which
is likely associated with a carrier-doping effect14,15 from the
substrate. In bulk FeSe, a significant electronic anisotropy is
found below Ts in the nonmagnetic orthorhombic phase, which is
often called a nematic state9,10,16,17. In the nematic phase, very
small Fermi surfaces with strong deviations from the first-
principles calculations have been observed10,18,19, and the
occurrence of superconductivity with such small Fermi energies
is quite unusual, implying that the system is deep in the crossover
regime between the weak-coupling Bardeen–Cooper–Schrieffer
and strong-coupling Bose–Einstein–condensate limits10.

In addition to these distinct electronic characteristics
of FeSe, remarkable properties have been reported under high
pressure20–27. First of all, the initial study on powder samples has
shown that the relatively low TcE9K at ambient pressure can be
enhanced by more than fourfold toB37K underB8GPa, pushing
it into the class of high-Tc superconductors21. More recent studies
under better hydrostatic pressure conditions revealed a complex
temperature–pressure (T–P) phase diagram featured by a
suppression of Ts around 2GPa, a sudden development of static
magnetic order above B1GPa (ref. 23), and an enhancement of Tc
in a three-plateau process24, that is, TcB10(2)K for 0–2GPa,
TcB20(5)K for 3–5GPa, and TcB35(5)K for 6–8GPa. The first
jump of Tc from B10 to B20K seems to coincide with the
suppression of the nonmagnetic nematic state and the development
of the long-range magnetic order at Tm evidenced by mSR
measurements22. The observation that both Tc and Tm increase
with pressure in the pressure range 1–2.5GPa has been taken as
evidence for the cooperative promotion of superconductivity by the
static magnetic order22. Such a scenario, however, does not fit
into the general scope of iron-based superconductors, in which the
optimal superconductivity is realized when the long-range
magnetic order is close to collapse1,28. This issue remains unclear
unless the fate of magnetic order at Tm under higher pressures is
sorted out. Due to the technical limitations of probing small-
moment magnetic order above 3GPa, this task only becomes
possible very recently when a clear signature at Tm is visible in the
resistivity23,25,26 of high-quality FeSe single crystals29. We also note
that more recently the pressure-induced magnetic order in these
single crystals has been confirmed below Tm by Mössbauer30 and
nuclear magnetic resonance (NMR) measurements31.

Here by performing the high-pressure resistivity r(T)
measurements up to B15 GPa on high-quality single crystals,
we construct for bulk FeSe the most comprehensive T–P phase
diagram mapping out the explicit evolutions with pressure of Ts,
Tc and Tm. We uncover a previously unknown dome-shaped
Tm(P), having two end points situated on the boundaries
separating the three plateaus of Tc(P). Our results thus
provide compelling evidence linking intimately the sudden
enhancement of Tc to 38 K to the suppression of long-rang
magnetic order. This highlights a competing nature between
magnetic order and high-Tc superconductivity in the phase
diagram of FeSe, which is a key material among the iron-based
superconductors.

Results
Low-pressure region. The tetragonal-orthorhombic structure
transition at TsE90K for bulk FeSe (blue square in Fig. 1) is
manifested as a slight upturn in resistivity, which can be taken as
a signature to track down the evolution of Ts with pressure. Our
resistivity r(T) data measured with a self-clamped piston–
cylinder cell (PCC) up to B1.9GPa are shown in Fig. 2a. As
can be seen, Ts is suppressed progressively to below 50K at
B1.5GPa, above which the anomaly at Ts becomes poorly
defined. Meanwhile, a second anomaly manifested as a more
profound upturn in r(T) emerges at TmB20K and moves up
steadily with pressure. In light of the recent high-pressure mSR,
Mössbauer, and NMR studies22,30,31, this anomaly at Tm
corresponds to the development of long-range magnetic order.
We also note that in this magetically ordered state below Tm, the
orthorhombic structure similar to the one (space group Cmma) in
the nematic phase has been reported recently30,31. Ts and Tm
seem to cross around B2GPa. In this pressure range, the
superconducting transition temperature Tc (defined as the zero-
resistivity temperature) first increases and then decreases slightly
before rising again. This features a small dome-shaped Tc(P)
peaked at B1.2 GPa (Fig. 1), which roughly coincides with the
pressure where the long-range magnetic order at Tm starts to
emerge. These results in this relatively low-pressure range are in
general consistent with those reported previously23,25,26.

High-pressure region. To further track down the evolution of
Tm, we turn to r(T) measurements in cubic anvil cells (CACs)
that can maintain a quite good hydrostaticity up to B15GPa
(refs 32–34). Figure 2b–d displays the r(T) data measured in two
self-clamped CACs and one constant-loading CAC (see Methods
for experimental details). In line with the results of PCC in
Fig. 2a, the sudden upturn is clearly visible at Tm in both
measurements in the pressure range up to B2.5GPa (Figs 2b,d
and 3a,b), above which the upturn anomaly disappears and
instead a kink appears in r(T) followed by a gradual drop before
reaching the superconducting transition (Figs 2b,d and 3c,d). Our
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Figure 1 | Temperature–pressure phase diagram of bulk FeSe. The
structural (Ts, blue), magnetic (Tm, green), and superconducting transition
temperatures (Tc, red and black) as a function of hydrostatic pressure in
high-quality single crystals determined by anomalies in resistivity r(T)
measured in the PCC (open circles), clamp-type CAC (closed circles), and
constant-loading type CAC (closed squares). Tc values determined from the
ac magnetic susceptibility (w(T)) measurements in the clamp-type CAC are
also shown (solid triangles). The magnetic phase is most likely a spin
density wave (SDW) phase. Colour shades for the nematic, SDW, and
superconducting (SC) states are guides to the eyes.
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Phase Diagram

Black hole horizon at r = rh

directly. There is one more comment on the BF bound analysis. In our numerical experience,
the phase transition density at zero temperature is not exactly the same as BF bound
analysis. The actual transition points are usually located inside the boundary of BF bound
analysis in Figure 1.

In this section, we numerically solve the equations of motion(10) with proper boundary
conditions. We want to construct background geometry with a black hole horizon. Then,
we can impose the metric function and the gauge field vanishes at the black hole horizon as

U(r)
���
r!rh

⇠ (r � rh)U
0(rh)

at(r)
���
r!rh

⇠ (r � rh)a
0
t
(rh), (25)

and the scalar field �(r) and wapping factor W (r) go to finite value. For the numerical
calculation, we fix 16⇡G = L = 1 from now.

Together with (25) and the equations of motion (10)-(13), we get near horizon behavior
of each field by the regularity condition as

at(rh) = 0, a0
t
(rh) = a0

h

�(rh) = �h, �0(rh) =
2�h(2m2

� �2 a02h + 2�4 a04h )

2(6�m2�2
h
� 2)� a02

h
(1 + �2 �2

h
) + 6�4 �2

h
a04
h

U(rh) = 0, U 0(rh) =
1

4

�
12� a02

h
� 2m2�2

h
� 22

� �2 �
2
h
a02
h
+ 6�4 �

2
h
a04
h

�
. (26)

Notice that the solution of the coupled nonlinear equations (10) - (13) can be classified by
the horizon value of the scalar field �h and the derivative of the U(1) gauge field a0

h
only.

4.1 Superconducting Dorm

In this section, we discuss the non-linear electrodynamic interaction e↵ect on the transi-
tion between the normal phase and the hairy black hole phase, which is interpreted as a
superconducting phase in the boundary system.

The most simple solution of the model is the vanishing scalar field solution. In the
absence of the scalar field, all the non-linear electrodynamic interaction terms vanish and
the action becomes that of the usual Einstein-Maxwell-Axion system. The solution of this
system is nothing but the RN black brane solution with momentum relaxation given by

U(r) = r2 �
2

2
�

M

r
+

Q
2

4r2
,

At(r) = µ�
Q

r
,

�(r) = W (r) = 0 . (27)

For the RN black brane, the mass parameter can be written by

M = r3
h
+

Q
2

4rh
�

2rh
2

, (28)
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with the following condition for z < 2;

e4�2
0(m

2�2
0 + 2z � 2) + e2(z � 1)z2(1 + �2�

2
0)� 12�4(z � 1)2z4 = 0. (35)

Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2 ⇠ �e2W (r)U(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2)

= �
A2

0e
2�2

0

z � 1
r2zdt2 +

dr2

r2
+ r2(dx2 + dy2), (36)

where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
This condition (35) implies z = 1 when �0 = 0 which is asymptotic AdS geometry. If

we substitute parameters used in Figure 3 (d) and the asymptotic value of the scalar field
in Figure 5(a) into (35), then we get the dynamical critical exponent z0 ⇠ 1.077. Figure
6 shows that the numerical solution of the gauge field(solid line) matches this dynamical
critical exponent very well(red dashed line).

(a)

Figure 6: Log-log plot for the Numerical solution of A(t)(solid line) and At(r) ⇠ A0rz0(red
dashed line). z0 is determined by parameters in Figure 3 (d) and the condition in (35).
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Figure 7: Phase diagram with m2 = �1, �2 = 6, �4 = 1.5 and e = 1. The numerical
calculations are not well solved in the dark gray region.

11

RN AdS black hole

Hairy BH with scalar condensation

?



7th International Conference on Holography and String theory in Da Nang Duy Tan University, Da Nang

Asymptotic solution

clear that we need not only �2 interaction but also �4 term to construct a superconducting
dorm. This is already speculated in BF bound analysis (24). As we change the mass the
parameter region for the superconducting dorm would be changed. But it only can be
checked by numerical calculations and we show a single case in this paper.

In this work, we are mainly focused on the construction of the superconducting dorm.
Therefore, we will concentrate on the Figure 3 (d) case. We postpone the details of other
cases in future work.

4.2 New scaling geometry

In this section, we study background solutions in the superconducting phase. To do this,
we choose parameters in the model used in Figure 3 (d). As temperature decreases, one can
expect the value of condensation will increase, satisfying source free conditions as shown in
Figure 2. However, when we lower the temperature for a given Q/2 line, we cannot get
source source-free solution of the scalar field below a certain temperature.

(a) (b)

Figure 5: Numerical solution of (a) scalar field �(r) and (b) gauge field At(r) in low tem-
perature region. We use parameters in Figure 3 (d)

The numerical solutions of each field are totally di↵erent from the solutions of hairy
black hole, see Figure 5. Instead of vanishing at the boundary, the scalar field goes to
a finite value. The gauge field monotonically increases while it goes to the value of the
chemical potential in the asymptotic AdS cases. We also check that the metric function
U(r) increases as r2 in the asymptotic region.

The behavior of the scalar field and the U(1) gauge field obviously implies that the
asymptotic geometry cannot be an AdS spacetime. To see more details of the background
geometry, we substitute the asymptotic behavior of the fields

�(r) ! �0, U(r) ! r2, (33)

to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
motion as

At(r) ⇠ A0r
z, W (r) ⇠

1

2
log

✓
A2

0e
2�2

0 e
2(z � 1)

2(z � 1)

◆
, (34)
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Quantum Critical Region
chemical potential in the asymptotic AdS cases. We also check that the metric function
U(r) increases as r2 in the asymptotic region.

The behavior of the scalar field and the U(1) gauge field obviously implies that the
asymptotic geometry cannot be an AdS spacetime. To see more details of the background
geometry, we substitute the asymptotic behavior of the fields

�(r) ! �0, U(r) !
r2

L2
0

, (33)

to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
motion as

At(r) ⇠ A0 r
z, W (r) ⇠

1

2
log

✓
e2A2

0�
2
0L

4
0 r

2(z�1)

2(z � 1)

◆
, (34)

with the following conditions;

(z � 1)z2

e2L4
0

�2 �
12(z � 1)2z4

e4L8
0�

2
0

�4 � 6 +m2�2
0 +

2(2 + z)

L2
0

+
(z � 1)z2

e2L4
0�

2
0

= 0

e2L4
0�

2
0(z � 1)z2�2 � 4(z � 1)2z4�4 � e4L6

0�
2
0(2� 2z +m2L2

0�
2
0) = 0

e2L4
0�

2
0z�2 � 8(z � 1)z3�4 + e2L4

0(z � e2L2
0�

2
0) = 0. (35)

Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2|r!1 ⇠ �
A2

0e
2L2

0�
2
0

2(z � 1)
r2zdt2 +

L2
0

r2
dr2 + r2(dx2 + dy2), (36)

where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
The condition (35) looks very complicated. However, these equations are nothing but

coupled algebraic equations, and hence we can get (�0, z, L0) in terms of (e, m2, �2, �4).
For example, if we substitute parameters used in Figure 3 (d), (e, m2, �2, �4) = (1, �

1, 6, 1.5) into (35), then we get (�0, z0, L0) ⇠ (0.297, 1.081, 0.939). Figure 6 shows
that the numerical solutions of the scalar field and the gauge field match very well with the
analytic result from (35)(red dashed line). We check other numerical solutions with di↵erent
parameters and confirm that (35) holds for other cases.

The final phase diagram of our model is drawn in Figure 7. Here, we replace the charge
density Q into Q̂ ⌘ e�W (rh)a0

h
which is a slope of the gauge field at the horizon defined in

(26) because the definition of charge density is not clear in the Lifshitz region. We used
parameters in Figure 3 (d) where the superconducting dome is well shaped. In the figure, the
superconducting dome appears in the finite range of the charge density and low temperature
region, denoted as ‘SC’. This superconducting phase is realized by spontaneous condensation
of the charged scalar field with asymptotic AdS geometry. Outside of the superconducting
dome is covered by a metallic phase, which corresponds to the usual RN-AdS black hole
denoted by ‘Metal’.

Inside the superconducting phase, we find a phase that has new scaling symmetry. In
this region, the scalar field goes to a constant in the asymptotic region and hence there is no

13

with the following condition for z < 2;

e4�2
0(m

2�2
0 + 2z � 2) + e2(z � 1)z2(1 + �2�

2
0)� 12�4(z � 1)2z4 = 0. (35)

Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2 ⇠ �e2W (r)U(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2)

= �
A2

0e
2�2

0

z � 1
r2zdt2 +

dr2

r2
+ r2(dx2 + dy2), (36)

where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
This condition (35) implies z = 1 when �0 = 0 which is asymptotic AdS geometry. If

we substitute parameters used in Figure 3 (d) and the asymptotic value of the scalar field
in Figure 5(a) into (35), then we get the dynamical critical exponent z0 ⇠ 1.077. Figure
6 shows that the numerical solution of the gauge field(solid line) matches this dynamical
critical exponent very well(red dashed line).

(a)

Figure 6: Log-log plot for the Numerical solution of A(t)(solid line) and At(r) ⇠ A0rz0(red
dashed line). z0 is determined by parameters in Figure 3 (d) and the condition in (35).
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Figure 7: Phase diagram with m2 = �1, �2 = 6, �4 = 1.5 and e = 1. The numerical
calculations are not well solved in the dark gray region.
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Asymptotic solution

Lifshitz symmetry Quantum Critical Region

clear that we need not only �2 interaction but also �4 term to construct a superconducting
dorm. This is already speculated in BF bound analysis (24). As we change the mass the
parameter region for the superconducting dorm would be changed. But it only can be
checked by numerical calculations and we show a single case in this paper.

In this work, we are mainly focused on the construction of the superconducting dorm.
Therefore, we will concentrate on the Figure 3 (d) case. We postpone the details of other
cases in future work.

4.2 New scaling geometry

In this section, we study background solutions in the superconducting phase. To do this,
we choose parameters in the model used in Figure 3 (d). As temperature decreases, one can
expect the value of condensation will increase, satisfying source free conditions as shown in
Figure 2. However, when we lower the temperature for a given Q/2 line, we cannot get
source source-free solution of the scalar field below a certain temperature.

(a) (b)

Figure 5: Numerical solution of (a) scalar field �(r) and (b) gauge field At(r) in low tem-
perature region. We use parameters in Figure 3 (d)

The numerical solutions of each field are totally di↵erent from the solutions of hairy
black hole, see Figure 5. Instead of vanishing at the boundary, the scalar field goes to
a finite value. The gauge field monotonically increases while it goes to the value of the
chemical potential in the asymptotic AdS cases. We also check that the metric function
U(r) increases as r2 in the asymptotic region.

The behavior of the scalar field and the U(1) gauge field obviously implies that the
asymptotic geometry cannot be an AdS spacetime. To see more details of the background
geometry, we substitute the asymptotic behavior of the fields

�(r) ! �0, U(r) ! r2, (33)

to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
motion as

At(r) ⇠ A0r
z, W (r) ⇠

1

2
log

✓
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0e
2�2

0 e
2(z � 1)

2(z � 1)

◆
, (34)
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Quantum Critical Region

with the following conditions;

(z � 1)z2
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Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2|r!1 ⇠ �
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2L2

0�
2
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2(z � 1)
r2zdt2 +

L2
0

r2
dr2 + r2(dx2 + dy2), (36)

where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
The condition (35) looks very complicated. However, these equations are nothing but

coupled algebraic equations, and hence we can get (�0, z, L0) in terms of (e, m2, �2, �4).
For example, if we substitute parameters used in Figure 3 (d), (e, m2, �2, �4) = (1, �

1, 6, 1.5) into (35), then we get (�0, z0, L0) ⇠ (0.297, 1.081, 0.939). Figure 6 shows
that the numerical solutions of the scalar field and the gauge field match very well with the
analytic result from (35)(red dashed line). We check other numerical solutions with di↵erent
parameters and confirm that (35) holds for other cases.

(a) (b)

Figure 6: Comparison of numerical results with analytic results from (35). (a) Comparison
of the scalar field. (b) Comparison of the gauge field. We draw log-log plot for better
comparison.

The final phase diagram of our model is drawn in Figure 7. Here, we replace the charge
density Q into Q̂ ⌘ e�W (rh)a0

h
which is a slope of the gauge field at the horizon defined in

(26) because the definition of charge density is not clear in the Lifshitz region. We used
parameters in Figure 3 (d) where the superconducting dome is well shaped. In the figure, the
superconducting dome appears in the finite range of the charge density and low temperature
region, denoted as ‘SC’. This superconducting phase is realized by spontaneous condensation
of the charged scalar field with asymptotic AdS geometry. Outside of the superconducting
dome is covered by a metallic phase, which corresponds to the usual RN-AdS black hole
denoted by ‘Metal’.

Inside the superconducting phase, we find a phase that has new scaling symmetry. In
this region, the scalar field goes to a constant in the asymptotic region and hence there is no
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chemical potential in the asymptotic AdS cases. We also check that the metric function
U(r) increases as r2 in the asymptotic region.

The behavior of the scalar field and the U(1) gauge field obviously implies that the
asymptotic geometry cannot be an AdS spacetime. To see more details of the background
geometry, we substitute the asymptotic behavior of the fields

�(r) ! �0, U(r) !
r2

L2
0

, (33)

to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
motion as
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Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!
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where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
The condition (35) looks very complicated. However, these equations are nothing but

coupled algebraic equations, and hence we can get (�0, z, L0) in terms of (e, m2, �2, �4).
For example, if we substitute parameters used in Figure 3 (d), (e, m2, �2, �4) = (1, �

1, 6, 1.5) into (35), then we get (�0, z0, L0) ⇠ (0.297, 1.081, 0.939). Figure 6 shows
that the numerical solutions of the scalar field and the gauge field match very well with the
analytic result from (35)(red dashed line). We check other numerical solutions with di↵erent
parameters and confirm that (35) holds for other cases.

The final phase diagram of our model is drawn in Figure 7. Here, we replace the charge
density Q into Q̂ ⌘ e�W (rh)a0

h
which is a slope of the gauge field at the horizon defined in

(26) because the definition of charge density is not clear in the Lifshitz region. We used
parameters in Figure 3 (d) where the superconducting dome is well shaped. In the figure, the
superconducting dome appears in the finite range of the charge density and low temperature
region, denoted as ‘SC’. This superconducting phase is realized by spontaneous condensation
of the charged scalar field with asymptotic AdS geometry. Outside of the superconducting
dome is covered by a metallic phase, which corresponds to the usual RN-AdS black hole
denoted by ‘Metal’.

Inside the superconducting phase, we find a phase that has new scaling symmetry. In
this region, the scalar field goes to a constant in the asymptotic region and hence there is no

13

with the following condition for z < 2;
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2
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Combining all asymptotic solutions, the asymptotic geometry becomes Lifshitz geometry!

ds2 ⇠ �e2W (r)U(r)dt2 +
dr2
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+ r2(dx2 + dy2)
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where z denotes the dynamical critical exponent in the Lifshiz scaling theory.
This condition (35) implies z = 1 when �0 = 0 which is asymptotic AdS geometry. If

we substitute parameters used in Figure 3 (d) and the asymptotic value of the scalar field
in Figure 5(a) into (35), then we get the dynamical critical exponent z0 ⇠ 1.077. Figure
6 shows that the numerical solution of the gauge field(solid line) matches this dynamical
critical exponent very well(red dashed line).

(a)

Figure 6: Log-log plot for the Numerical solution of A(t)(solid line) and At(r) ⇠ A0rz0(red
dashed line). z0 is determined by parameters in Figure 3 (d) and the condition in (35).
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Figure 7: Phase diagram with m2 = �1, �2 = 6, �4 = 1.5 and e = 1. The numerical
calculations are not well solved in the dark gray region.
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Asymptotic solution III

Lifshitz symmetry Quantum Critical Region

clear that we need not only �2 interaction but also �4 term to construct a superconducting
dorm. This is already speculated in BF bound analysis (24). As we change the mass the
parameter region for the superconducting dorm would be changed. But it only can be
checked by numerical calculations and we show a single case in this paper.

In this work, we are mainly focused on the construction of the superconducting dorm.
Therefore, we will concentrate on the Figure 3 (d) case. We postpone the details of other
cases in future work.

4.2 New scaling geometry

In this section, we study background solutions in the superconducting phase. To do this,
we choose parameters in the model used in Figure 3 (d). As temperature decreases, one can
expect the value of condensation will increase, satisfying source free conditions as shown in
Figure 2. However, when we lower the temperature for a given Q/2 line, we cannot get
source source-free solution of the scalar field below a certain temperature.

(a) (b)

Figure 5: Numerical solution of (a) scalar field �(r) and (b) gauge field At(r) in low tem-
perature region. We use parameters in Figure 3 (d)

The numerical solutions of each field are totally di↵erent from the solutions of hairy
black hole, see Figure 5. Instead of vanishing at the boundary, the scalar field goes to
a finite value. The gauge field monotonically increases while it goes to the value of the
chemical potential in the asymptotic AdS cases. We also check that the metric function
U(r) increases as r2 in the asymptotic region.

The behavior of the scalar field and the U(1) gauge field obviously implies that the
asymptotic geometry cannot be an AdS spacetime. To see more details of the background
geometry, we substitute the asymptotic behavior of the fields

�(r) ! �0, U(r) ! r2, (33)

to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
motion as

At(r) ⇠ A0r
z, W (r) ⇠

1
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0 e
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, (34)
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Figure 5: Numerical solution of (a) scalar field �(r) and (b) gauge field At(r) in low tem-
perature region. We use parameters in Figure 3 (d)
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asymptotic geometry cannot be an AdS spacetime. To see more details of the background
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to the equations of motion (10)-(13), then, we find that the solution satisfying equations of
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Quantum Critical Region
On-shell actioin

1 Introduction

2 Holographic Model coupled to Non-linear Electro-
dynamics

In this section, we propose a model which is appropriate to describe a nontrivial phase
structure. We start with the following action:
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Z
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4
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�
�2F

2 + �4L
2(F 2)2

�
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Here, we introduce the linear axion field �i and the complex scalar field � to realize an
impurity e↵ect and a superconducting order, respectively. Also, the electromagnetic field is
given F = dA and F 2 denotes FMNFMN . We provide the equations of motion in Appendix
A.

Now, we take a suitable ansatz for a hairy black brane solution as follows:
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�
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dr2
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where a trivial phase of the complex scalar has been taken, so �(r) is a real function. Then,
one can derive equations of motion with this ansatz given in Appendix A. The equations of
motion of this system admit the RN black brane solution given by
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ML4

r
+

Q2L6
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For the RN brack brane, the mass parameter can be written by

M =
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where rh is the location of the horizon. The hawking temperature and the entropy density
are
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, s =
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. (6)

When considering the nonlinear term given by the second term in (2), the ghost-free
condition of the Maxwell field may limit the validity of the analysis under consideration. In
this work, we only care about the linear stability of the Maxwell field. We allow the fluc-
tuation around a background as FMN = F bg

MN
+ �FMN , where F bg

MN
is the background
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Massive gauge field: Lifshitz solution

 is free parameter: Charge can be defined independently A0

Thermodynamics of boundary theory
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Thermodynamics
Thermodynamic quantities

TH =
1

4π
eW(rH) U′ (rH)

s = 4πr2
H

Qrt = −g (1 + γ2 |ϕ |2 + 2γ4 |ϕ2 |F2) Frt
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Thermodynamics
Asymptotic AdS geometry

Stot = Sbulk + Sc

= − ∫ d3x∫
Λ

rH

dr −gℒbulk − ∫r=Λ
d3x −γ (−2K − 4 +

1
2

γij∂iψ I∂jψ I)
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Thermodynamics
Asymptotic AdS geometry

Einstein tensor + Einstein equation

Gμν = Rμν −
1
2

gμνR = 
1
2

gμν (ℒbulk − R) − Tμν

Stot = Sbulk + Sc

= − ∫ d3x∫
Λ

rH

dr −gℒbulk − ∫r=Λ
d3x −γ (−2K − 4 +

1
2

γij∂iψ I∂jψ I)

Sbulk = − V3 ∫
Λ

rH

−g (−Gt
t − Gr

r + 2
Txx

r2 ) = − V3 ∫
Λ

rH

(−β2eW(r) − 2(eW(r)rU(r))′ )

= − V3 ∫
Λ

rH

(−β2eW(r)) + 2V3 Λ U(Λ)

Sc = − V3 [ U(Λ) (−4Λ2 + β2) + Λ2U′ (Λ) + 4Λ U(Λ)]
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Asymptotic AdS geometry

U(r) ∼ r2 −
β2

2
−

M0

r
⋯

At(r) ∼ μ −
𝒬
r

+ ⋯

Son

V3
= − M0 − β2 Λ − ∫

Λ

rH

(−β2eW(r))
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Trace of the Einstein equation
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Boundary energy momentum tensor

J
H
E
P
0
7
(
2
0
1
5
)
0
2
7

Plugging the solution (3.7) into the Euclidean renormalised action (3.4), we have the

thermodynamic potential (Ω) and its density (W):

SE =
V2

T
(−m0 − β2rh + q2mrh) ≡

V2

T
W ≡ Ω

T
, (3.12)

where V2 =
∫
dxdy. The potential density W can be expressed in terms of the thermody-

namic variables as

W =
Ω

V2
= −r3h −

rh
4
(µ2 + 2β2 − 3q2m)

= ε− sT − µρ ,
(3.13)

where ε and ρ are the energy density and the charge density respectively. The second line

is obtained by using the relation

ε = 2m0 , ρ = µrh , (3.14)

which is derived as follows. We want to compute one-point functions of the boundary

energy-momentum tensor (Tµν), current (Jµ) and scalar operators (OI) dual to χI . Our

metric is of the following form

ds2 = N2dr2 + γµν(dx
µ + V µdr)(dxν + V νdr) , (3.15)

where N and Vµ are the lapse function and the shift vector. The extrinsic curvature

tensor has non-vanishing components, Kµν = − 1
2N (∂rγµν −DµVν −DνVµ), where Dµ is a

covariant derivative of the boundary metric γµν . In terms of aforementioned variables, we

define ‘conjugate momenta’ of the fields as

Πµν ≡ δSren

δγµν
=

√
−γ
(
Kµν −Kγµν − 2γµν +Gµν [γ]−

1

2
∂µχI∂νχI +

1

4
γµν∇χI ·∇χI

)
,

Πµ ≡ δSren

δAµ
= −N

√
−γ F rµ, ΠI ≡ δSren

δχI
=

√
−γ (−N∇rχI −!γχI) . (3.16)

Thus, the one point functions are

⟨Tµν⟩ = lim
r→∞

2r√
−γΠµν =

⎛

⎜⎝
2m0 0 0

0 m0 0

0 0 m0

⎞

⎟⎠ ,

⟨Jµ⟩ = lim
r→∞

r3√
−γΠ

µ = (µrh, 0, 0) , ⟨OI⟩ = lim
r→∞

r3√
−γΠ

I = 0 , (3.17)

which yield (3.14).

Since the pressure P = −W, (3.13) becomes a Smarr-like relation

ε+ P = sT + µρ . (3.18)

Notice that the pressure is not equal to ⟨Txx⟩ since

P = ⟨Txx⟩+ rhβ
2 − rhq

2
m . (3.19)
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Asymptotic AdS geometry
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Trace of the Einstein equation
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Λ

rH
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d3x −γ (−2K − 4α1 + α2γij∂iψ I∂jψ I + α3

1
−γ

AtQrt)
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Asymptotic Lifshitz geometry
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Asymptotic Lifshitz geometry
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Thermodynamics
Asymptotic Lifshitz geometry

Trace of the Einstein equation

−β2eW(r) = ∂r [4rU(r)eW(r)] − ∂r [r2U(r)(eW(r))′ ] + ∂r [(r2U(r)eW(r))′ ] − ∂r [Qrt(r)At(r)]

Son

V3
= 2 Λ U(Λ) + 4rU(r)eW(r) − r2U(r)(eW(r))′ + (r2U(r)eW(r))′ − Qrt(r)At(r)

Λ

rH

+ Sc
Λ

To be Continued……
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Thank you !!


