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Background
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Superfluidity, characterized by the flow of matter without resistance,
represents a remarkable macroscopic quantum phenomenon observed
in various systems, including ultracold atomic gases, liquid helium
and strongly interacting high density matters existing inside neutron
stars, and has broad applications.
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Some features of superfluid:
® Second order phase transition at critical temperature.
® /ero shear viscosity.
® Velocity field is irrotational V x vy = 0.
® Quantized vortex.

¢ | andau critical velocity above which the superfluid becomes un-
stable.

The third and the fourth feature are consequences of the fact that
order parameter of s-wave superfluids can be described by a complex

scalar field O = e and v, = V6.
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These features are all implemented by the simple holographic super-

fluid model:
6
S:/dx4fl (R+ﬁ)+£ (1)
with 1
Ly = —(D,V)*DHT — m?|¥|* — T Fu- (2)

Various progress has be made based on this model, proving it to
be a useful tool for exploring superfluid with dissipation and finite
temperature effect at strong coupling limit.
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Kibble-Zurek mechanism

Near the Critical Point At Equilibrium
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del Campo, A., Gdmez-Ruiz, F.J., Li, ZH. et al. J. High Energ. Phys. 2021, 61 (2021).

Vortex dynamics

Ty

Fig. 1. Holographic description of a superfluid with vortices. The vertical axis is the radial direc-
tion z of AdS,. The planes z = 0 and z = 1 are the boundary of AdS, and the black hole horizon,
respectively. The green surface is a surface of constant bulk charge density, with the region between E d

the two slies deginlrg a “slab” of condensate where mast huﬂemargg reside. Theg;hh screens n e rgy Ca Sca e
exdtations from falling into the horizon. This can be seen from the vector field (red arrows) indicating
the energy flux (~t5,—f,~t4 of Eq. 3, which vanishes rapidly below the slab. The vortices (blue tubes)
punch holes through this screening slab, providing avenues for excitations to fall into the black hale.
The surface z = 0 shows the condensate on the boundary (with blue representing zero condensate), -
superposed with flow lines of the superfluid velocity (Eq. 1). The z = 1 surface shows the flux of
energy through the horizon, This anergy flux is significant (red and green) only near the wake of the
moving vortices, as is most easily seen in movies of the simulation available at http:/Aurbulentlns,
mitedwSuperfiuid.

Fig. 2. The superfluid condensate |0y (£, x))I* at time ¢ = 0 (left) and £ = 300 (right). Flow lines Figure 7. The o faan of the Klnetlé eherdy Spectea e (t, k) a L= 165
of the superfluid cument 7 (, x) (defined in Eq. 1) are superimposed. The superfluid current e R R R R I e ;

circulates around the core of each vortex, where the condensate vanishes. The ¥ = +6 vortices (left) are
much larger than the W = + 1 vortices (right). The yellow arcs seen in the right panel are waves produced

FIG. 3. Density and phase plots of the condensate for
splitting processes of the quadruply quantized vortex under
random perturbations with distinct splitting patterns at different

between the driven and undriven systems, The external sources are turned on at ¢ = 150 and turned

off at ¢ = 210, The blue curve is the kinetic energy spectrum for the undriven superfluid while the

by the annihilation of vortex pairs. red one is that for the driven superfluid. The injected energy at the IR is propagating to UV, lcmpc['u[urcs_
Lan, S., Tian, Y. & Zhang, H. J. High Energ. Shanquan Lan, Xin Li, Yu Tian, Peng Yang, and
Paul M. Chesler et al. Science341,368-372(2013). Phys. 2016, 92 (2016). Hongbao Zhang. Phys. Rev. Lett. 131, 221602
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On the other hand, interface instabilities are ubiquitous in nature,
found in both classical hydrodynamics and quantum superfluids. Typ-
ically, they occur when the two phase-separated fluid components
have relative velocity across the interface. In this case, they are de-
noted as Kelvin-Helmholtz instability (KHI).

Figure taken from internet.
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This phenomenon can also occur in quantum superfluids, called quan-
tum Kelvin-Helmholtz instability (QKHI).

(@ A=01 Vg/V=v045 We=212

() A=0.001 Vgp/V=+045 We = 20559

Figure taken from arXiv: 2104.13539.
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Studies about QKHI usually rely on coupled Gross-Pitaevskii equation
(GPE):

i0,0; = (—

V= i+ gil Wil + g5 ° + Vi) s,
s pi + gi| Vil ™ + gi5| 5| ) (3)

(i, = 1,2, i#j).

which is a model equation for the ground-state single-particle wave-
function in a weakly interacting Bose-Einstein condensate. g2 >

/9192 gives immiscible BECs, and g2 < /9192 gives miscible ones.

However, this model does not include effects from dissipation and
finite temperature, and it fails for strong interacting cases.
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Model & Results
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Holographic setup

In this work we consider a 3+1 dimension holographic two-component
superfluids model in probe limit. The Lagrangian for matter is:

L =— (DU, DFUy — m?| Uy 2 — (D, Ug)* DUy — m2|Wy?
1

4 174
— §|‘Pl\2|‘Pz|2 - ZF”’ Fuy,

(4)
where D, V; = (V, —ie;A,)¥;, A, is the U(1) gauge field, F),, is
the field strength and ;s are two complex scalar fields coupled with
each other, so as to mimic interaction between two components of

two-component superfluids.
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Model & Results
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As for background, we use a planar AdS black hole in Eddington-
Finkelstein coordinates:

L2
ds* = ?(—(1 — (2/2)%)dt* — 2dtdz + dz* + dy?).  (5)
For convenience, we set L = z;, = 1, m% — m% = —2,e1=e9 =1

and choose radial gauge A, = 0, then asymptotic expansions for A,
and W, near AdS boundary read

A, =a,+bz+ 0(2:2),

Ui = (Ui)oz + (Wi)12° + O(2). (6)

From gauge-gravity duality, the coefficients a;, a; (i = z,y) and
(W;)o can be interpreted as chemical potential y, vector potential,
and scalar operator source at the boundary respectively. (¥;); cor-
responds to the expectation value of order parameter (O).
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Stationary phase separated state

To study interface of two-component superfluids, we would like to
find solutions which is homogeneous in y direction. Therefore, we
can simplify EoMs by choosing the following ansatz:

= x)ewi(z’w’y), A = Ai(z, ), (7)

together with the gauge choice

A
8.0; = ==, (v) = 0ubi— Ay =0, (vi)y(z,2) =d,0; — A,.

-
(8)

Consistence of above ansatz requires 0,(A, + (vi),) = 0.
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EoMs reduce to

2

2 2 Aj ¥ g o
Oz (fOzd) + 030 (Ui)y¢i+7‘§bi — 26 — S50 =0, (9)
FOTAL +82A; — 24> ¢7) = 0. (10)
02 (£82 (vi)y) + 9z (vi)y — 23 (vi)yd] = 0. (11)

We solve these equations numerically by Newton-Raphson method.
In z direction, we use Chebyshev pseudo spectral method with fol-
lowing boundary conditions at z = 0

9i(z=0)=0, A(z=0)=p, (vi)y(z=0)= (_1)(?:_1)%/2;

(12)
and regular condition at z = 1, where v, is the relative velocity
between the two components. In x direction, we use fourth order
finite difference scheme and Neumann boundary condition.
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Figure 1: A typical stationary configuration for the immiscible binary superfluids. Plot-
ted are the normalized order parameter of the two superfluid components O; with Qg
the value of the order parameter far from the interface. The phase with a interface
consists of the configuration in which one component occupies half of the space and

the other does the rest.
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We can fit the profiles by

| 2

|©1 |2 = |O§ (1 — tanh(x/d)), (13)

where & stands the width of the interface.
1
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(a) Normalized |©1]2 for (b) Normalized |O1|2 for (c) Interface width & and
different pu; v = 1 and different v; 4 = 6 and |O()|2 for different vy; pu =
vy = 0. vy = 0. 6 and v = 1.

Figure 2: Normalized order parameter of the first component for different 1 and v,
and interface width § and |Og|? for different v,,. Oy is the value of the order parameter

far from the interface. Profiles of |(J3]? are mirror image of those of |(1]? about x-axis.
Black line in (c) is fitting result.
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(a) 0 — p. v = 1. Slope of the (b) 6 —v. u = 6. Slope of the
dashed line is -0.5. dashed line is -0.5.

Figure 3: Interface width § with different 1 and v.

In GPE, when coupling strength A = g12/g — 1 is small, § is given
by 6 = £/A~Y2, where & = h/\/2mpu is the healing length. We
see results from our holographic model is in agreement with those
from GPE, if we identify ;1 — 1. and v in holographic two-component
superfluid model with ¢ and A in GPE.
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Dynamic instability

To observe the interface instability of two-component superfluids, we
perturb the stationary configurations solved above. Since different
initial conditions lead to quantitatively similar late-time patterns, we
focus on initial condition of perturbed ®; that takes the following
form:

O; = Pos[1 + Yy exp(iky + i0;)] (14)
k

where 0, is a random phase for each k, and « is a small number
which we set to be 0.01. The system is then evolved with this initial
configuration for ®; while keeping the gauge field unperturbed.
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We adopt the fourth order Runge-Kutta method along the time di-
rection. At z = 0 the boundary conditions are

P(z2=0)=A4,(2=0)=A4,(2=0)=0, A(z=0)=pn. (15)

Thanks to the coordinate system we use, no boundary condition is
imposed at the event horizon zj,. In the y direction we use the period
boundary condition with its size L,, i.e.

O(y) =Dy + Ly), Au(y) = Aply + Ly) . (16)
We impose the Neumann boundary condition
Oy ®(x = £L,/2) = 0, A, (x =L, /2) =0, (17)

along the z direction, with L, the size of the system. The size of
our system L, X L, is prepared properly for each parameter set such
that that the boundary effect can be negligible for the physics we are
interested in.
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When perturbation is turn on, phenomenons like quantum Kelvin-Helmholtz instability
occur at the interface, just like what happens to two-component superfluid interface
under perturbations from solving GPE.

50 50

40 40

30 30
= >

20 20

10

FIgU re 4: For vy = 1.2566 at T /T. = 0.677, snapshots of the condensation difference AO =

(|01 |2 — [(92|2)/|(’)0|2 (upper panel) and the profile of the phase of the first component 6; (bottom
panel) are presented at different times to illustrate the interface dynamics. Small initial perturbations on
the interface destabilize and evolve into larger amplitude structures, leading to the formation of vortices
and the onset of quantum turbulence. The plot of 0, is restricted to cases where |01]? — |©O2]% > 0,
as otherwise |O1| is small, and 61 would be dominated by noise. In this illustration, we set » = 1 and

maintain g = 6.
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The onset of the instability of such stationary solutions can be ana-
lyzed by the linear response theory. We turn on the linear perturba-
tions on the stationary background

Q; = Do +0®;, A = Ay + Ay,

(18)
Ay = Ago + 64y, A, = Ay + 64,

where ®q;, Ao, Azo and Ao are stationary solutions. Considering
the fact that the background is the same over time and in the y-
direction, we choose the bulk perturbation fields as:

§B; = ui(z,x)e Wk WY 5% = (2, x)e  HWITFY) g Vi)Y Y

SA: = a+ (ij)e—i(wt—ky)) SA. = ay (Z’:Ij)e—z'(wfr,—ky)7 5A, = ay(z,a})e_i(“”t_ky)_
(19)
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The resulting linear perturbation equations are
2i A0 0su; + 2ia;0,Pp; + 10, Aou; + 10,03 P + 05 (fO05u4) — zuy + E)gui —(k+ ('t;i)y)guz- — 10, Aol
— i®gi(0zaz + ikay) — (AZg + Adg)u; — 2A50P0i0, — 2A4y0P0ia, — 2i(Azodpu; + i(k + (vi)y) Ayous)
: ‘ : v v
— 2i(ay 0> Po;i + zay(?)ﬁ)y@ﬂi) — §|(:[)0j|2u.i — §(I)ﬂj(1)0i“j — Efl)gjcl}()i‘vj
= _giwazuia (7’13 =1, 2 1 # .7) ’
— 2iAyp0,v; — 2i0;0,Pq; — 10, Aygv; — 10,a;Pp; + 0. (fO,v;) — 2v; + Bi'v?; — (k- (vi)y)zm + 10, ALov;
+ i3, (0par + ikay) — (A2g + Ajo)vi — 24,090,05 — 24050y + 2i(Azodzv; + i(k — (vi)y) Ayovi)
v 1
+ 2i(as BB — iay (1)) — 5 |Poj|vi - gq:-njfb;;,.wj - g%@aw
= —2iwdvi,  (4,j=1,2 i#j),
fﬁat — k2%a; + [0,0,0, + ik f0.ay — 2a; Z |‘I’m'|:2 — 2A40 Z((I)Fh-ui + Ppiv;) +if Z{'@Eif)zui
i i i
— ®0;0,v; + v;0,Pp; — 4;0,Pp;) = —iw(d,a; + Opay + ikay) + w Z(fb&;ui — Og;v;) ,

;i 4

0.(0zay + [0:05) — (KPag + ikdzay) — 205 Y " |Boi|* — 2450 Y (Df;ui + Poivy)

i

1

ik0,a; + 0,(f0.a,y) + f)ga.y — tk0za, — 2a, Z |‘II>p,,i|2 — 2A,0 Z(Q’S_iui + $g;v;)
i

+ Z((k + (v3)y) Poitts — (K — (v3)y) Poivi + (13)yVi®o; + (Vi)yuiPy;) = —2iwd,a,, .
i
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This results in a generalized eigenvalue problem
: T
Myuy = ZWkBUk, Up = {Ul,Ul,Ug,’Ug,CLt,ay}k. (20)

Since 6® ~ e ™! the stationary configuration is dynamical unstable
whenever Imwy > 0.

Note that the complex conjugates of linearized equations of motion
can be obtained via the following transformation:

k— —k, w——w' w©ov, a,—a,, (21)
so that whenever w is an eigenvalue for given wave number £, —w*
Is an eigenvalue for —k, and they share the same imaginary part.
Therefore, without loss of generality, we only need to consider posi-
tive k.

Yu-Ping An (%) Institute of Theoretical Physics, Chinese Academy of Sciences

Interface Dynamics of Strongly interacting Binary Superfluids 22 /37



Model & Results

elelolelolelololelolololele] lelolelolololelelolelole;

To gain the quantitative feature of the system, we consider the wave num-
ber of the most unstable modes k( versus the relative velocity v,. From
linear analysis, for each velocity, the imaginary part rises with the increase
of k, peaks at a certain wave number that corresponds to the most unsta-
ble mode k.

0.12 T . n 1 1 , .

0 10 20 30 40 50 60 70 80

Figure 5: The largest imaginary of the spectrum of QNMs of stationary configurations
with T'/T. = 0.677 and vy = 2.5132. We fix v =1 and p = 6.
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From time evolution, we extract Fourier spectrum of the shape of
interface at each time before the vortices develop. For each v,,
we find a stable peak in Fourier spectrum at kg during non-linear

evolution.
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Figure 6: Left panel: |O;|* — |O2]? at z = 0. Right panel: Fourier
transforms of the shapes of interface.
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FIgU re (: (a) The plot depicts the wave number of the fastest-growing mode kg as a function of
interfacial relative velocity for T /T, = 0.677. The circles with error bars represent kg values extracted
from real-time evolution, while the solid line corresponds to perturbation analysis around the stationary
state. The density plot provides information on the dominant Quasinormal Modes (QNMs) for each
combination of wave number and velocity. The insert illustrates the highest point (star) where the average
distance of vortices 47 /v, equals the vortex size 2R. (b) Displays the kg vs. v relation according to
the Gross-Pitaevskii equation (GPE) at zero temperature. (c) lllustrates kg — v the relation from our
holographic theory at various temperatures. Dashed vertical lines indicate critical velocities where the
average distance of vortices generated along the interface equals the vortex size. The parameter is chosen

to be v = 1.
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Coflow instability

When wind blows through flags, flags
would flap, showing instability. The flag
acts like a interface between the wind
aside it, and the wind in the two sides
are flowing with the same velocity in the
same direction. What about interface of
binary superfluids?

Figure 2 The two stable states of the filament. When the filament length is greater than
= . the critical value, it can stay in either a stretched-straight state or an oscillatory state. The

Zha & J. ! Child FEaS, S. ! Li bChaber' A. et al Nature 408' flow is visualized using interference patterns under a sodium lamp. a, The filament is
stretched straight in the flow, Yon Karman type vortices are shed from its free end. b, The

835—-839 (2000) . oscillatory flapping state. Flow structures, modulated by the filament, are advected
downstream. Interference fringes run in the flow direction, indicating that the soap film is
under [ttle stretching and compression. e, The free end of the filament shows a ‘figure of
eight’ trajectory owing to the existence of the travelling waves associated with the flapping
maotion.
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At finite temperature, a superfluid and a normal fluid component coexist.
The interface of the binary superfluids could be unstable due to the relative
velocity between the superfluid component and normal component. This
can not be presented by GPE due to its Galilean invariant nature.

08 10.8

o 08T 106

o -

Y Q
04} 104
0.2} 102

04 05 06 07 08 09 1
T T

Figure 8: The fraction p*/p carried by the superfluid condensate and the one p™/p by
the normal fluid component as a function of temperature, where p = p® + p™.

Yu-Ping An (%) Institute of Theoretical Physics, Chinese Academy of Sciences

Interface Dynamics of Strongly interacting Binary Superfluids 27 /31



Model & Results

lelelolelolelololelolelolelololololole] lololelolelele;

025 ! I T T T T
| .
0.2 v =0.63]-
= 1.73
— 0.15 T
.
=
= 01 i
0.05 H 7
O | ,
4 5 6
Figure 9: |Im(w)| versus k for superflow velocity v§ = —v§ = v obtained from the

GPEs. The system becomes dynamically unstable whenever Im(w) # 0. Green, red and
blue lines correspond to v = 0, 0.63 and 1.73, respectively. It is manifest that there is
no instability for v = 0. We have chosen g =m =1, g12 = 2 and u = 0.5.
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Dissipation or finite temperature effect in GPE is often considered
by adding a phenomenological dissipation term:

738,5\11@- = iat\Ifi = ’)/at\lf@ ' (22)

with v a constant. The effect of this additional parameter v to w is

simply
w—w =(1—-ivw. (23)

This leads to nonphysical effect of co-flow instability. That is, at
large momentum, instability strength increases unboundedly as k& in-
creases. Compared to this naive phenomenological model, the holo-
graphic model gives more natural and physical result.
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0.25 . . ; ; . ;

v = 0.63

0.2

0.15

Tm(w)

0.1

Figure 10: The same quantities are shown as in Fig. 9 with the same parameters,
except that additional dissipation v = 0.01 is included. This gives nonphysical result
for co-flow interface instability: instability strength grows fast and unboundedly as k

INncreases.
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Due to relative velocity between superfluid component and normal component, interface
instability shows in our holographic model even the two superfluid components are
flowing in the same direction with the same velocity. This is a quantum analog to the
flapping of flags in wind, where the role of flag is played by the interface.

40 t=1 40

t=150 i

= 20 = 20 = 20

= O \ __/V\./ﬁ\/ﬁ

= 20 =20

0
-20 0 20 -20 0

M Ha

FIgU re 11: For vy /[Te = 5.348 at T'/T. = 0.677, snapshots of the condensation difference AO =

(|O112 — |©5]2)/|Og|? (upper panel) and the profile of the phase of the first component 6, (bottom
panel) are presented at different times to illustrate the interface dynamics. In this illustration, we set

v = 1 and maintain u = 6.
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Still, we can do linear analysis for this finite temperature interface instability. We can
see for the case with zero relative velocity, ko — vy curve has no turning point and is
monotonically increasing with respect to overall velocity v,. For fixed velocity, ko and
the overall instability decrease as temperature decrease, which is expected since normal
component should disappear as temperature goes to 0.

Im(w
3.5 : —_( )
: 0.06
3
10.04
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0.02
v 2
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vy /T

FIgU re 12: llustration for the dynamical interface instability via QNMs around the stationary phase-
sperated configuration with T'/T., = 0.677 and v = 1. The density plot shows Im(w) in terms of k£ and
vy with T'/T. = 0.677 for which the fastest growing modes are denoted by the red curve. The blue
triangle corresponds to kg extracted from time evolution at the same velocity as in Fig. 11. The black
vertical dashed line denotes the critical velocity v/T. = 6.06 beyond which the Landau instability begins
to appear. = o = = =
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Figu re 13: Interface patterns for two superfluid components moving beyond the Landau
critical velocity. For vy /T. = 6.685 at T/T. = 0.677, snapshots of the condensation
difference AO = (|O1]? — |02]?)/|O¢|? (upper panel) and the profile of the phase of
the first component 6; (bottom panel) are presented at different times to illustrate the
interface dynamics. In this illustration, we set ¥ = 1 and maintain u = 6.
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Summary:

® Qur work initiates the investigation of interface instabilities in the
holography laboratory, providing an intriguing platform to explore the
interplay of instabilities and the emergence of complex flow phenom-
ena.

® For counterflow case, from both the far-from-equilibrium evolution
and the linear QNMs analysis, we find that the %y depends non-
monotonically on the superfluid velocity. We have uncovered that the
turning point occurs when the mean separation of vortices generated
by interface instabilities becomes comparable to the size of vortices,
suggesting that the non-monotonicity is due to the direct interaction
between neighbor vortices.

® \We also give the first explicit realization of co-flow interface instability
in quantum fluids, which is due to relative velocity between superfluid
component and normal component.
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More coming and stay updated!

e Symbiotic vortex-bright soliton in immiscible binary
superfluids.

® Instability in miscible binary superfluids.

e Composite vortex in miscible binary superfluids.
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