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Quantum Chaos and the upper bound on Lyapunov exponent
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Out-of-time-ordered correlator, OTOC

F(t) = (V(O) W(t) V(0) W(£)) 5 ~ 1 — ece™
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Chaos bound in classical motion

The static equilibrium of test particles with external repulsive force near black holes.

K. Hashimoto and N. Tanahashi, Phys. Rev. D 95 (2017) no.2, 024007

Figure 1: Schematic diagram of particle motion and radial effective potential V.
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Chaos bound in classical motion

The unstable equilibrium of particles near black holes

2
% =N(r—n) — r=mn+ CeM+ Che M
K. Hashimoto and N. Tanahashi, Phys. Rev. D 95 (2017) no.2, 024007

Near the horizon A=x=27T — ‘ Chaos bound in particle motion A < &

A different physical background from QFT.

Unstable equilibrium ~ The chaos bound
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Near-horizon expansion and the violation of chaos bound

With the near-horizon expansion, the Lyapunov exponent X satisfies
N = w24 q(r—m) + O ((r—m)?),

There is a violation for A < x when v > 0, and the value of v depends on the black hole
metric and the potential function.

The effects from the high order terms of near-horizon expansion!
0. Q. Zhao, Y. Z. Li and H. Lii, Phys. Rev. D 98 (2018) no.12, 124001
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metric and the potential function.

The effects from the high order terms of near-horizon expansion!
0. Q. Zhao, Y. Z. Li and H. Lii, Phys. Rev. D 98 (2018) no.12, 124001

The violation of chaos bound in static equilibrium
® Non-violation cases: Reissner-Nordstrom (RN)BH and Reissner-Nordstrom Anti-de Sitter
(RN-AdS) BH.

® Violation cases: Reissner-Nordstrom de Sitter (RN-dS) BH, BHs in
Einstein-Maxwell-dilaton gravity, Einstein-Born-Infeld gravity and
Einstein-Gauss-Bonnet-Maxwell gravity.

Thermodynamic Stability Chaos Bound Violation in Ct Black Hole



Background and Motivation
00000e

More research on particle motion and chaos bound

e Minimal length effect:

F Lu, J. Tao and P. Wang, JCAP 12 (2018), 036

X Guo, K. Liang, B. Mu, P. Wang and M. Yang, Chin. Phys. C 45 (2021) no.2, 023115
e The influence of angular momentum:

N. Kan and B. Gwak, Phys. Rev. D 105 (2022) no.2, 026006.

B. Gwak, N. Kan, B. H. Lee and H. Lee, JHEP 09 (2022), 026.

Y Q. Lei and X. H. Ge, Phys. Rev. D 105 (2022) no.8, 084011

S. Jeong, B. H. Lee, H. Lee and W. Lee, Phys. Rev. D 107 (2023) no.10, 104037.

Thermodynamic Stability Versus Chaos Bound Violation in Charged Black Hole



Background and Motivation
00000e

More research on particle motion and chaos bound

e Minimal length effect:

F Lu, J. Tao and P. Wang, JCAP 12 (2018), 036

X Guo, K. Liang, B. Mu, P. Wang and M. Yang, Chin. Phys. C 45 (2021) no.2, 023115
e The influence of angular momentum:

N. Kan and B. Gwak, Phys. Rev. D 105 (2022) no.2, 026006.

B. Gwak, N. Kan, B. H. Lee and H. Lee, JHEP 09 (2022), 026.

Y Q. Lei and X. H. Ge, Phys. Rev. D 105 (2022) no.8, 084011

S. Jeong, B. H. Lee, H. Lee and W. Lee, Phys. Rev. D 107 (2023) no.10, 104037.

The upper bound of Lyapunov exponent and its violation in particle motion.

The physical meaning ¢

Thermodynamic Stability Versus Chaos Bound Violation in Charged Black Hole



punov exponent of unstable circular orbits

@ The Lyapunov exponent of unstable circular orbits

in Charged Black Hole



The Lyapunov exponent of unstable circular orbits
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The Lyapunov exponent

D-dimensional spherically symmetrically charged black holes
dr?

2= r
ds? = —f )dt2+g(r)

+ d0% .

Test particles moving on the equatorial plane
1 . 2 . .

S e 2@ Cant = S

L ) < f(?”) + g(T’) + d) q t(r) ) q )

-7 denotes the derivative of the proper time 7.
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The Lyapunov exponent

D-dimensional spherically symmetrically charged black holes

dr’
ds? = —f(r)df? + — + dQ3_,.
( ) g(r) D-2
Test particles moving on the equatorial plane
1 . 72 . . e
c= e+ = 2@ -l g
) < f(?”) + g(T’) + d) q t(r) ) q m)
“.” denotes the derivative of the proper time 7.
Generalized momentum:
= %@t = —FE, m:%: 9(.2)’ %:%ZT%ZL’

The Hamiltonian of particles
mif+ P — (m+ qAy)?)

H=mn,i'—L= 5:2]
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The Lyapunov exponent

With the equation of motion in the proper time 7

P T o

The radical motion in coordinate time ¢
dr Tof?

dt "1 E-qA,

dm, _7.77" _ fl (th - E) f<2L2 B 7371',2”]‘() A’ — F
et 2f * 23 (E— qA,) 0T

F17
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The Lyapunov exponent

With the equation of motion in the proper time 7

xu:?ﬂﬁ’ T, = — Q=

The radical motion in coordinate time ¢

dr Tof?

— == —-—"——=F
drmy. _7.77“ _ f (th - E) + f<2L2 B 73’”72”]‘() _ A’ — F
at ¢t 2f 23 (E— qA,) 0T

Taking (r, 7,) as the phase space variables, the Jacobian matrix is

0F, 0F,

_ or oy

KZ] - OFs 8?‘2
or ony
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The Lyapunov exponent of unstable circular orbits
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The Lyapunov exponent

With the conditions 7, = dglrtr = 0 and 7%, = —1 near the position ry , the Jacobian
matrix can be reduced
£
0 - qA—E

=70
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The Lyapunov exponent of unstable circular orbits
[e]e]e] Jo]

The Lyapunov exponent

With the conditions 7, = dzlrtr = 0 and 7%, = —1 near the position ry , the Jacobian
matrix can be reduced
f
0 " qA—E

Ky = N 2 '
A—E)f % L
<(q 7 ) —ad - (Ts(thf—m) 0

Calculated by the Jacobian matrix, the Lyapunov exponent A of the unstable circular
orbit satisfies

AP (A (207 +377) + rA, (L2 + P ) 2 % ,
hl[ﬁ_ (A )+l ( >)+f{ ( 1z 2At>}_2f]

2 (L2 4 12)% A, UN S A,

=70

=10
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The Lyapunov exponent of unstable circular orbits
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Near-horizon expansion

For non-extremal BHs, we can consider the Taylor expansion near the horizon r = r.

N =k +y1(ro — ) +72(r0 — )2 + O ((7’— 7“+)3) )

r? Ay (ry)

"= Pry v 72 24)(ry)

(fig2 — fog1) + 4K>

| =
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The Lyapunov exponent of unstable circular orbits
[e]e]ele] )

Near-horizon expansion

For non-extremal BHs, we can consider the Taylor expansion near the horizon r = r.

M=k + 70— ) +72(r0 — ) > + O ((r—ry)?),

r? + Ay (ry)
LPry + 7‘3_ 2A45(ry)

1
"= Z(flgz — 1) + 4r?

The influence of angular momentum L: ‘

The increase in L = More larger «; = More likely to violate the chaos bound A <
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Black hole Thermodynamics

For D-dimensional RN black hole

72
ds? = —f(r )dt2+ﬂ+dQD 0

where f(r) =1 — —3 + = 53 57- The corresponding potential is A4(r) = The

Q
parameters M and Q) are related to the ADM mass M and the charge Q of black holes,
which satisfy
(D — 2)w D—2

8
The heat capacity at constant charge C is

(D — 2)(27: 3)wD_2 QQ

M= M, @@=

2(D — 2)2xPta 30T
42D = 5)m3 @I (25) — (D - 2)(D - 3)r ¥ 3P0 (25L)

Co=
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Black hole Thermodynamics

:::::

0 q
H o
-100 H 100
200 R R
i T 3 0 s

e ry y

(@) D=4 (b) D=5 (c) D=6

Co
Co

Figure 2: Heat capacity Cg at constant charge () = 1 with r for D dimensional RN black holes.
The figure (a), (b), (c) correspond to D = 4, 5, 6, respectively.

Thermodynamic phase transition point rp (Davies points)

VD=2 o
2,/(2D - 5) QT (Z52)
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Numerical result of A2 — x?

00025

o010

(@ D=4and L = 1. (b) D=4and L = 5.

(¢) D = 4 and the large angular
momentum limit.

Figure 3: The numerical results of A2 — 2 in 4-dimensional RN black holes with Q = 1.
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Figure 3: The numerical results of A2 — 2 in 4-dimensional RN black holes with Q = 1.

6(Mry, — 2Q%) (Mry, — @°)
h

N = n(r—m) +r—m)?+0(r-m)), =0 12=-

Yo=0 — T.=+3~1.732
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Numerical result of \? —

(a D=5and L=1.
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(b) D=>5and L = 5. (¢) D = 5 and the large angular
momentum limit.

() D==6and L =5. (f) D = 6 and the large angular
momentum limit.
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Numerical result of A2 — x?

DimensionAngular momentum L L=1 L=5 Large L limit
D=4 re=1116 | 7. =1433 | r,=1.732
D=5 re =0.750 | 7. =0.823 | r,=0.833
D=6 r. =0.703 | r. = 0.744 r. = 0.748

Table 1: The values of threshold parameter r. for violating the chaos bound in different cases.
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More discussion

0s2)

075

(a) D= 4. (b) D =5. (¢) D=6.

Figure 5: The threshold value r. for violating chaos bound as a function of the angular momentum L
in D-dimensional RN black holes. The figures (a), (b), (c) correspond to D = 4, 5, 6, respectively.
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Summary

Black Hole Thermodynamic Stability ~  Upper Bound of Lyapunov Exponent
1. For 4-dimensional RN black holes: Thermodynamically stable black holes correspond
to scenarios where the Lyapunov exponent upper bound is exceeded.

2. For higher-dimensional RN black holes: The bound is only violated in the context of
thermodynamically stable black holes.
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Conclusion
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1. Investigate the universality of the relationship between black hole
thermodynamic stability and the upper bound of the Lyapunov exponent.

2. Explore connections between the chaos bound and other properties of black
holes.

3. Go back to quantum chaos.

And more - - -
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