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@) Kibble-Zurek mechanism

The Kibble-Zurek mechanism (KZM) is a paradigmatic theory to describe
the critical dynamics with the spontaneous generation of topological

defects when the system undergoes a continuous phase transition through
a quench.

Sketchy picture to illustrate KZM:

quench
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disordered state ordered state



@) Kibble-Zurek mechanism
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A continuous second-order phase transition is characterized by
the divergence of both the correlation length ¢ and relaxation
time T near the critical point.

. adiabatic frozen E adiabatic

£(e) = Eolel ™. :
quench E
7(€) = Tole| 7" !
£ (t) :
e=1-T/T. €(t) = t/mq ;
impulse )
& To : constant coefficients i 7(t) PR, b
T | e ;

v,z4: boundary critical exponents ¥ -

freeze T(t)

€:the dimensionless distance Tir Tc T2

Adolfo del Campo and Wojciech H. Zurek.arXiv:1310.1600v3
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Kibble-Zurek mechanism

KZM predicts the relation between the number density of
topological defects n and the quench rate (strength) 7,

—Dv
1+'UZd
N TQ
VZ4 D is the spatial dimension
1+vzy4
Lfreeze X To
For 2-dim mean-field theory : v=1/2 Zg=2
12 -1/2
lreeze = TQ X TQ

To find various scaling exponents in KZM has become a prime and important subject recently.
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Lifshitz geometry

* Gauge/gravity duality (AdS/CFT correspondence) is a “first-principle” to
study the strongly coupled field theories from weakly coupled gravitational

theories in one higher dimensions.

* The Lifshitz geometry

2 2 2
AN L (E) dxc? z : dynamic critical exponent

ds2., = —(~) dt?+ = dr?+
d+2 (L) r2 L (Lifshitz exponent)

The geometry is invariant under an anisotropic scaling  t — A%, xi - Jxi, + - r/A,

The Lifshitz geometry is conjectured to describe a quantum critical point on the boundary.

 Natsuume (2018)

Perturbation arXiv:1801.03154

Whatever the value of z a quantum critical point (Lifshitz exponent) has,
the T # 0 critical pointis likely to have z; = 2 at the mean-field level.



Motivations

Without any perturbation

We directly studied the holographic KZM in the background of a
Lifshitz geometry with various Lifshitz exponents.

® To test the KZM.

® To identify the dynamical critical exponent z4 on the boundary
field theory is irrespective of the Lifshitz scaling z in the bulk.



Holographic Setup

 Action:
v -l . . ‘
S = / dlz/ =g [—E"‘}w‘“f’ — |DW|* — m?|

* Background in the probe limit :

AdS, black brane with Lifshitz scaling

. L\ ; LN B . 5 ‘
ds® = — (—) fu)dt? — 2 (—) dtdu + — (d:r:‘z + ri;.',r‘z) :
u

U (!

F) = 1 — (ufup)?*

L : the AdS radius u : AdS radial coodinate
u=0 is AdS boundary u, is the horizon

With ansatz:
U =U(tuzxy), A = At u,2,y), Ag = Az(t,u, x,y),

Ay = Ayt u,z,y) and Ay = 0.



@ Holographic Setup

In order to solve the systems, we need to provide suitable
boundary conditions.

* At the horizon, we demand the regularity of the fields.

e Expansions of the fields near boundary

z—I—E:L-\/(z—I—E)E—I—KimE

U = Wgul- 4+ Uyult, with Ay = 5

A;=a;+bu®, (i =z,y)

Ay = a; + by logu, =0
At — 3T btuz_z, Z 7é 2.



Holographic Setup

Holographic Renormalization

* Forz=1
The counter term: Oy = [ d*zy/—7 (n*(D,V)*V + c.c.)
The surface term: Court. = [ dPz/=yn*F,,, A”

%Y . determinant of the reduced metric on the boundary
n" . the normal vector perpendicular to the boundary.

In order to get dynamical gauge fields on the boundary, we need to impose Neumann
boundary conditions.

» Expanding the u-component of Maxwell equation implies the conservation equation on
the boundary

E}fbt-l"ail}i =0 by = —p Ji = _IIJ'-;.{ i (a;.:,fflf, o aﬂli}
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Holographic Setup

Holographic Renormalization
e For z=3/2
The counter term: Oy = [ d®z\/—v (n*(D,¥)*¥ + c.c.)

. “v - 3
The surface term: Ssurt. = [ d*x+/—yn*F,, A"

~ : determinant of the reduced metric on the boundary
n*: the normal vector perpendicular to the boundary.

» Expanding the u-component of Maxwell equation implies the conservation equation on
the boundary

E}tbt-}—&;.ﬁ =" by = —p I = —3b@/2 — (&-at — ataz')
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Holographic Setup

Holographic Renormalization
* For z=2

The counterterm:  Cy = [ d’x\/—y U U*
Oy = fd:}:zra.f—*}meF“i log(A)
The surface term: Court. = [ d*z/—yn*F,,, A”

A : anultraviolet cut-off scale

» Expanding the u-component of Maxwell equation implies the conservation equation on
the boundary

Opby +0;J* =0 by = —p gt = —2b; —(0;a¢ —Ora;).



Holographic Setup

Method

® \We take advantage of the Chebyshev pseudo-spectral method with 21
grids in the radial direction u and use the fourier decomposition in the (x,

y)-directions since the periodic boundary condition along (x, y) was
imposed.

® \We use the fourth order Runge-Kutta methed with time step.

® \We thermalize the system by adding small random seeds in the normal
state before quench. The reason is to make sure that the system before
guench is in a symmetrical phase , which is the requirement of KZM.

® We quench the system by linearly decreasing the temperature through
the critical point, then stop and keep the temperature at T=0.8Tc.
t=0 is the instant to cross the critical temperature Tc.



» Magnetic fluxoids and order parameter vortices

D, = [dxdy B(x,y) ~ 6.2690 ~ 1.99557x

10

y 0 . 0 X Yy 0~ :_'0
Figure 2: Configurations of magnetic fluxons (left panel) and superconducting vortices fright

panel) at temperature T/Tc = 0.8 with the quench time 1o = 1800 in the Lifshitz exponent z = 2.

Requirements of minimal free energy and periodicity of the phase of order parameter
imply the quantization of magnetic flux @, =2zn, N is an integer.



O(r) ~ O(oo)tanh(r/(v/2€))

» Magnetic fluxoids and order parameter vortices /
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M. Tinkham, “Introduction to Superconductivity”, 2nd Edition, McGraw-Hill Inc. press (1996).



Results

O(r) ~ O(c0) tanh(r/(v/2€))

» Magnetic fluxoids and order parameter vortices
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Ky—gjy = ME = L10/0.71 = 1.55 > 1j4/2

Type Il superconductor

M. Tinkham, “Introduction to Superconductivity”, 2nd Edition, McGraw-Hill Inc. press (1996).



Results

O(r) ~ O(oo)tanh(r/(v/2€))

» Magnetic fluxoids and order parameter vortices
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For slow quench, we can read taht
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» Vortex number density nec 707
: . . . M=y ~{703.9170+ 1. 1333)x 7o (704798£0.0162)
25} —3 — N,=3/2 z(d%iz.f)z +1.1431)x 7,(70489720.0183)
G N S WS en,_; ~(312,9211 + 1.2379)x ,(~04961:00315)
Tty aadiitan :
15 L
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e z=1
107 1 4 z=32
o z=2
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* Forthe slow quench (bigger 7, and red lines), both scaling relations satisfy the KZ scaling laws very well.
* For the fast quench (smaller To and blue lines), vortex number n is almost constant independent of To-

This is consistent with previous results in condensed matter or holography.



> Freeze-out time For slow quench, we can read taht

VZg
1+
200 | 4 t, X T VZg
Q
lp(z=1) =~ 5.0540 X ’L'QO'4845
- ....... -
23 100 e o o © o o o ccvcceem o ° _ tL(Z:3/2) ~ 4.5001 % TQ0.4834
e |
A A A A A AAAAAAAMM A AA“: . i | tL(z:Z) ~ 3.6064 ><1_QO.484~5
*®
50 ** 4 2=312
e 6 6 & o osssre®
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* Forslow quench the relation between t, and tq satisfy the KZ scalings very well.
* For fast quench the lag time t, keeps almost constant.



» Vortex number density and freeze-out time
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Trozg z=1: v=0.4893 z4=1.9579
o8 ‘L‘Q
_ mmp 2=3/2: v=04740 z,=1.9743
VZq4
1+vzg4
Lireeze X Ty 2=2: v=0.4812  z,=1.9532

* The holographic results for z; and v are very close to the mean-field
theory values with z, =2and v =1/2.

* We can see that the dynamic critical exponent z; on the boundary is
irrespective of the bulk Lifshitz exponent z.
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Conclusions & Outlooks

€® We studied the spontaneous formation of topological defects from KZM
in Lifshitz holography at the finite temperature.

 The magnetic fluxes were found to be quantized and belonged to the
type Il superconductor.

 The KZ scaling relations : the vortex number density and the lag time to
qguench time matched KZM very well.

* These two scaling relations implied that the dynamical critical exponent
on the boundary field theory was irrespective of the Lifshitz exponent
in the bulk.

& At zero temperature ????
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