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Kibble-Zurek mechanism 

The Kibble-Zurek mechanism (KZM) is a paradigmatic theory to describe 
the critical dynamics with the spontaneous generation of topological 
defects when the system undergoes a continuous phase transition through 
a quench.

Sketchy picture to illustrate KZM:



A continuous second-order phase transition is characterized by 
the divergence of both the correlation length ξ and relaxation 
time τ near the critical point.

ξ0, τ0 : constant coefficients

 ν,zd: boundary critical exponents

Adolfo del Campo and Wojciech H. Zurek.arXiv:1310.1600v3

Kibble-Zurek mechanism 

�:the dimensionless distance



KZM predicts the relation between the number density of 
topological defects n and the quench rate (strength) 

D is the spatial dimension

For 2-dim mean-field theory :

Kibble-Zurek mechanism 

To find various scaling exponents in KZM has become a prime and important subject recently.



Lifshitz geometry

• Gauge/gravity duality (AdS/CFT correspondence) is a “first-principle” to 
study the strongly coupled field theories from weakly coupled gravitational 
theories in one higher dimensions. 

 The geometry is invariant under an anisotropic scaling 

z : dynamic critical exponent 
     (Lifshitz exponent)

• Natsuume (2018)
arXiv:1801.03154Perturbation 

The Lifshitz geometry is conjectured to describe a quantum critical point on the boundary. 

• The Lifshitz geometry



Motivations

Without any perturbation
 
We directly studied the holographic KZM in the background of a 
Lifshitz geometry with various Lifshitz exponents.

l To test the KZM.

l To identify the dynamical critical exponent zd on the boundary 
field theory is irrespective of the Lifshitz scaling z  in the bulk.



AdS4 black brane with Lifshitz scaling

• Action:

• Background in the probe limit :

With ansatz:

Holographic Setup

L : the AdS radius         u : AdS radial coodinate  
                                        u=0 is AdS boundary    uh is the horizon



In order to solve the systems, we need to provide suitable 
boundary conditions.

• Expansions of the fields near boundary 

with

Holographic Setup

• At the horizon, we demand the  regularity of the fields. 



Holographic Renormalization

• For z=1
The counter term: 

The surface term: 

  :  determinant of the reduced metric on the boundary 
  :  the normal vector perpendicular to the boundary.

Ø Expanding the u-component of Maxwell equation implies the conservation equation on 
the boundary

Holographic Setup

 In order to get dynamical gauge fields on the boundary, we need to impose Neumann 
boundary conditions. 



Holographic Renormalization

• For z=3/2

The counter term: 

The surface term: 

  :  determinant of the reduced metric on the boundary 
  :  the normal vector perpendicular to the boundary.

Ø Expanding the u-component of Maxwell equation implies the conservation equation on 
the boundary

Holographic Setup



Holographic Renormalization

• For z=2

The counter term: 

The surface term: 

  :  an ultraviolet cut-off scale

Ø Expanding the u-component of Maxwell equation implies the conservation equation on 
the boundary

Holographic Setup



Method

• We take advantage of the Chebyshev pseudo-spectral method with 21 
grids in the  radial direction u and use the fourier decomposition in the (x, 
y)-directions since the periodic boundary condition along (x, y) was 
imposed.

Holographic Setup

• We use the fourth order Runge-Kutta methed with time step. 

• We thermalize the system by adding small random seeds in the normal 
state before quench. The reason is to make sure that the system before 
quench is in a symmetrical phase , which is the requirement of KZM.

• We quench the system by linearly decreasing the temperature through 
the critical point, then stop and keep the temperature at T=0.8Tc. 
    t=0 is the instant to cross the critical temperature Tc.



Results

Ø Magnetic fluxoids and order parameter vortices

Figure 2: Configurations of magnetic fluxons (left panel) and superconducting vortices (right 
panel) at temperature T/Tc = 0.8 with the quench time τQ = 1800 in the Lifshitz exponent z = 2.

Requirements of minimal free energy and periodicity of the phase of order parameter 
imply the quantization of magnetic flux                 , N is an integer.Nc 2
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From Abrikosov’s criterion the Landau-Ginzburg parameter:

Type II superconductor
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Results

Ø Magnetic fluxoids and order parameter vortices

From Abrikosov’s criterion the Landau-Ginzburg parameter:

Type II superconductor
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Results

Ø Vortex number density

This is consistent with previous results in condensed matter or  holography.

For slow quench, we can read taht



Results

Ø Freeze-out time For slow quench, we can read taht

• For slow quench the relation between tL and tQ satisfy the KZ scalings very well.
• For fast quench the lag time tL keeps almost constant.



Results

Ø Vortex number density and freeze-out time

z = 1 :          ν = 0.4893      zd= 1.9579

z = 2 :          ν = 0.4812       zd= 1.9532

• The holographic results for zd  and ν are very close to the mean-field 
theory values with             and            .  

• We can see that the dynamic critical exponent zd  on the boundary is 
irrespective of the bulk  Lifshitz exponent z.

z = 3/2 :      ν = 0.4740      zd= 1.9743

2z d 1/2



Conclusions & Outlooks

u We studied the spontaneous formation of topological defects from KZM 
in Lifshitz holography at the finite temperature.

• The magnetic fluxes were found to be quantized and belonged to the 
type II superconductor.

• The  KZ scaling relations : the vortex number density and the  lag time to 
quench time matched KZM very well. 

• These two scaling relations implied that the dynamical critical exponent 
on the boundary  field  theory was irrespective of the Lifshitz exponent 
in the bulk. 

uAt zero temperature ????
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